The last twenty years have seen the advent of computer-aided proofs in mathematics and this trend is getting more and more important. They request various levels of numerical safety, from fast and stable computations to formal proofs of the computations. Hovewer, the necessary tools and routines are usually ad hoc, sometimes unavailable, or inexistent. On a complementary perspective, numerical safety is also critical for complex guidance and control algorithms, in the context of increased satellite autonomy. We plan to design a whole set of theorems, algorithms and software developments, that will allow one to study a computational problem on all (or any) of the desired levels of numerical rigor. Key developments include fast and certified spectral methods and polynomial arithmetic, with subsequent formal verifications. There will be a strong feedback between the development of our tools and the applications that motivate it.


Kick-off meeting 27/4/2021, online. See the program.