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What’s your favourite method
to compute volumes of semi-algebraic
sets?
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General encounter model and probability of collision

Primary P

(operational) and
secondary S (debris)

Relative dynamics:
xT =

(
(rs − rp)T , (vs − vp)T

)
∈ R6

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ [t0, tf ]

Gaussian distribution µ0, density ρ0 for x0

Collision tube (swept volume):
X0 = {x0 ∈ R6 | ∃t ∈ [t0, tf ], x(t|x0) ∈ XR}
XR = {x ∈ R6 | ‖r‖2 −R2 ≤ 0}

Probability of collision:

Pc = µ0(X0) =

∫
X0

ρ0(x0)dx0

ρ0: Gaussian PDF

X0: swept-volume

PDF

Swept Volume

1 / 16



The swept volume I

Collision domain: X0 = {x0 ∈ R6 | ∃t ∈ [t0, tf ], x(t|x0) ∈ XR}.

The swept volume is visualized in 3D, fonction of the relative position.

1. Short-term encounters, no velocity
uncertainty
 the swept volume is a cylinder
(collision tube).

Analytic method

Effective a priori error bounds

Linear complexity

CNES implemented it and now uses it
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The swept volume II

Collision domain: X0 = {x0 ∈ R6 | ∃t ∈ [t0, tf ], x(t|x0) ∈ XR}.

The swept volume is visualized in 3D, fonction of the relative position.

1. Short-term encounters, no velocity
uncertainty
 the swept volume is a cylinder
(collision tube).
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2. Linear encounters, with velocity
uncertainty
 the swept volume is a cylinder for
each fixed velocity vector.
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Linear encounters, with velocity uncertainties

The swept volume is a cylinder for each fixed velocity:

X 0
∞ = {x0 ∈ R6 | v0 ∈ R3 and ||v0 × r0||2 ≤ R||v0||2}.

6D Integral to evaluate:

Pc =
1

(2π)3
√

det(Px0 )

∫
X0
∞

exp

(
−

1

2
(x0 −mx0 )TP−1

x0
(x0 −mx0 )

)
dx0.

Current method:

- N Gaussian random velocity samples vi;

- for each vi, compute with the super FastRelax 2D algorithm + recent improvements based on
saddle-point method;

- do the average.

This is an integral of a holonomic function on a semi-algebraic domain.

TODO (1): "half-a-page" algorithm written in C to evaluate this with the required accuracy.
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Recap of swept volume "types"

3D Projection of swept volume, fonction of relative positions.
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1. Short-term encounters, no velocity
uncertainty  cylinder.

2. Linear encounters, velocity uncertainty  
cylinder for each fixed velocity.

3. Non-linear encounters, with or without
velocity uncertainty

What can we do?
PDF

Swept Volume
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Swept volume as union of semi-algebraic sets

The set B̄3(0, R)× R3 is (retro)-propagated from
ti to t0

Ki :=
{
x0 ∈ R6 :

R2 − xT0 Φ(ti, t0)T I11Φ(ti, t0)x0 ≥ 0
}
,

t0, x
0
r, ρ

0
r

B3(0, R)

Φ
−1 (t i

, t0
)

The sets Ki are neither disjoint, nor compact in
general

N⋃
i=1

Ki ⊆ X0 =
{
x0 ∈ R6 : ∃ t ∈ [t0, tf ] t.q.

R2 − xT0 Φ(t, t0)T I11Φ(t, t0)x0 ≥ 0
}
,

Pc([t0, tf ]) '
∫

N⋃
i=1
Ki

ρ0(x0)dx0,

KN

t0,x0r,ρ
0
r

K0

Ki
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Swept volume as union of semi-algebraic sets
Integration of a Gaussian PDF on a union of semi-algebraic sets: First Approach

P̃c '
∫

N⋃
i=1
Ki

ρ(x)dx,

PDF

Swept Volume

1. Outer-approximate the union K :=
N⋃
i=1
Ki by a polynomial super-level set (PSS) i.e.,

pd ∈ R[x]d s.t.
K ⊆ PSSpd := {x : pd(x) ≥ 1}.

2. Compute the integral of a Gaussian on a PSS

Reasons: Visualisation, better numerical behaviour, Gaussian on a PSS is holonomic...
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PSS for the swept volume I
Volume of a semi-algebraic set∗

vol(K) =

∫
K

dλB(x),

Optim. over measures Optim. over polynomi-
als up to deg. d

Duality

v∗ = sup
µ
µ (K)

µ ≤ λB,
supp(µ) ⊆ K,
µ ≥ 0.

w∗d = inf
p∈R[x]d

‖p‖1,

s.t.
p ≥ 0 onB,
p ≥ 1 onK.

SDP Programming

SO
S

w∗d ↓ v
∗ = vol(K)

∗Lasserre, Henrion; [DabbeneHenrionLagoa]
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PSS for the swept volume II
Volume of union of semi-algebraic sets∗

vol

(
N⋃
i=1

Ki

)
=

∫
N⋃

i=1
Ki

dλB(x),

Optim. over measures Optim. over polynomi-
als up to deg. d

Duality

v∗ = sup
µi

N∑
i=1

µi (Ki)

N∑
i=1

µi ≤ λB,

supp(µi) ⊆ Ki,
µi ≥ 0.

w∗d = inf
p∈R[x]d

‖p‖1,

s.t.
p ≥ 0 onB,
p ≥ 1 onKi.

SDP Programming

SO
S

w∗d ↓ v
∗ = vol

(
N⋃
i=1
Ki

)

∗Lasserre, Henrion; [DabbeneHenrionLagoa]
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Polynomial Approximations for the swept volume

(PSS) of fixed degree d:

 Polynomial optimization problem, LMI, SDP optimization
 Prototype Implementation in Matlab
 Tested on some cases [Alfano2009]
 Degree d = 4, 6, 8
 Better results in 3D (less overestimation)
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Probability computation based on PSS

Two steps:

1. Implicit Representation of the integration domain by a PSSpd .

2. Gaussian integration (3D or 6D), on PSSpd :

Pc '
1√

(2π)ndet(P )

∫
PSSpd

e−
1
2

(x−xm)′P−1(x−xm)dx.

For n = 3, adaptive Gauss quadrature for implicit domains [Saye2015] ;
For n = 6, classical Monte-Carlo sampling.
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Swept volume as union of semi-algebraic sets
Integration of a Gaussian PDF on a union of semi-algebraic sets: Second Approach∗

P̃c '
∫

N⋃
i=1
Ki

ρ0(x0)dx0,

PDF

Swept Volume

Optim. over measures Optim. over moment
sequences

Optim. over moment
seq. up to deg. d

κ∗ = sup
µi

N∑
i=1

µi (Ki)

N∑
i=1

µi ≤ ρ,

supp(µi) ⊆ Ki,
µi ≥ 0.

 Infinite dim. LP
 mij =

∫
Ω

xjdµi(x)

 Need to compute the
moments of ρ.

κ∗d = sup
mij

N∑
i=1

mi0

Inequality constr
Localization
SDP Mom matrix

SDP Programming

κ∗d ↓ κ
∗ = P̃c

TODO (2): efficient/reliable computation of moments of Gaussian on balls
∗J.-B. Lasserre & Co-authors
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Examples
Case 7 of [Alfano2009]

(a) Miss distance (en m)
(b) Instantaneous PoC with (in
blue) or without (in red)
velocity uncertainty at TCA

(c) 3D Swept-volume (no
velocity uncertainty) (d) PSS Approximation d = 4

Figure – Test Case Alfano-7: Brute-force-PoC =0.000158 (106 samples) ; PoC =0.000165, with PSS
d = 4, in 3D.
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Examples
Case 9 of [Alfano2009]

(a) Miss distance (en m) (b) Instantaneous PoC with
velocity uncertainty at TCA

(c) Instantaneous PoC without
velocity uncertainty at TCA

(d) 3D Swept-volume (no
velocity uncertainty)

(e) PSS Approximation
(without velocity uncertainty)
d = 8

(f) Projection of PSS6D
approximation, d = 8, for a
specific velocity = mean
velocity at TCA.

Figure – Test Case Alfano-9; Brute-force-PoC-3D =0.287322, (106 samples); PoC =0.2825, for PSS
d = 8, in 3D; Brute-force-PoC-6D =0.36336 (106 samples); PoC =0.506297, for PSS d = 8, in 6D.
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Examples
Case 11 of [Alfano2009]

(a) Miss distance (en m) (b) Instantaneous PoC with
velocity uncertainty at TCA

(c) Instantaneous PoC without
velocity uncertainty at TCA

(d) 3D Swept-volume (no
velocity uncertainty)

(e) PSS Approximation (no
velocity uncertainty) d = 8

(f) Projection of PSS6D
approximation, d = 8, for a
specific velocity = mean
velocity at TCA.

Figure – Test Case Alfano-11; Brute-force-PoC-3D=0.0026, same result for PSS d = 8, in 3D;
Brute-force-PoC-6D =0.0032 (105 samples); PoC =0.06239, PSS d = 8, in 6D.

15 / 16



Conclusion

Generalization of methods for calculating the probability of collision between two
spacecraft, for cases where the simplified 2D model is not realistic enough

Several methods analyzed and proposed by trying to gradually increase both the modeling
and computation complexity

Need for clarification between modeling and calculation method, validation of models and
validation of methods

Significant work needed for the discrimination, analysis and evaluation of each type of
encounter

TODO (1): "half-a-page" algorithm written in C to evaluate this with the required
accuracy

X 0
∞ = {x0 ∈ R6 | v0 ∈ R3 and ||v0 × r0||2 ≤ R||v0||2}.

Pc =
1

(2π)3
√

det(Px0 )

∫
X0
∞

exp

(
−

1

2
(x0 −mx0 )TP−1

x0
(x0 −mx0 )

)
dx0.

TODO (2): efficient/reliable computation of moments of Gaussian on balls
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