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What's your favourite method
to compute volumes of semi-algebraic
sets?




General encounter model and probability of collision

Velacity of
Primary Spacceraft

Velocity of

o Relative dynamics:

el = ((rs —rp)T, (vs —vp)T) €RS

#(t) = f(t,z(t)), =(to) ==z0, tE [to,ty]
o Gaussian distribution g, density po for zg

1-o Error Ellipsoid
of Sccondary Object

J o Collision tube (swept volume):

1.0 Error Ellipsoid

oty St Xo = {zo € R® | 3t € [to,tf], z(t|z0) € XR}
Primary P Xr={z RO ||r||? - R?<0}

(operational) and
secondary S (debris)

Probability of collision:

Pe = po(Xo) = /p(i(xo)dmo
Xo

Swept Volume

@ po: Gaussian PDF

e Xp: swept-volume
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The swept volume |

Collision domain: Xy = {zg € R® | 3¢t € [to,tf], z(t|z0) € Xr}.

The swept volume is visualized in 3D, fonction of the relative position.

Short-term encounters, no velocity
uncertainty

~~ the swept volume is a cylinder
(collision tube).

Analytic method
Effective a priori error bounds
Linear complexity

CNES implemented it and now uses it

Encounter

Three-dimensional Plane

Relative Path
(Collision Tube)

Relative /

Velocity

Combined
spherical object

combined obiect
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The swept volume |l

Collision domain: Xy = {zg € R® | 3t € [to,tf], z(t|z0) € Xr}.

The swept volume is visualized in 3D, fonction of the relative position.

Encounter

Three-dimensional Plane

pdf

1. Short-term encounters, no velocity
uncertainty
~ the swept volume is a cylinder Relative Path
(collision tube). (Gollision Tube)

Combined
spherical object

Relative /

Velocity

2. Linear encounters, with velocity
uncertainty
~ the swept volume is a cylinder for
each fixed velocity vector.
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Linear encounters, with velocity uncertainties

@ The swept volume is a cylinder for each fixed velocity:

Xgo ={zo € RS | vo € R3 and [lvo X roll2 < R||vol|2}-

@ 6D Integral to evaluate:

1 _
(75(360 — mzo)TPle (zo — mzo)) dzg.

1
Pe= ——7——— / ex
(@m)/Ael(Pay) J T

XOO

Current method:

- N Gaussian random velocity samples v;;
for each v;, compute with the super FastRelax 2D algorithm + recent improvements based on

saddle-point method;

do the average.

This is an integral of a holonomic function on a semi-algebraic domain.

TODO (1): "half-a-page" algorithm written in C to evaluate this with the required accuracy.
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Recap of swept volume "types"

3D Projection of swept volume, fonction of relative positions.

Encounter

Three-dimensional Plane
pdf

Relative Path Combined
(Collision Tube)

spherical object

netatve /)

Velocity

1. Short-term encounters, no velocity
uncertainty ~~ cylinder.

3. Non-linear encounters, with or without
velocity uncertainty

@ What can we do?

2. Linear encounters, velocity uncertainty ~~
cylinder for each fixed velocity.

Swept Volume

5/ 16



Swept volume as union of semi-algebraic sets

o The set B5(0, R) x R3 is (retro)-propagated from
t; to to

KCi = {mo eRS:
R2 — ngD(ti,to)TIn@(ti,to):co > O} s

@ The sets KC; are neither disjoint, nor compact in
general

N
U Ki CAXy = {xo eRC: Jte [to, tf] t.q.
i=1

R? - mg@(t,tQ)Tfll‘I)(t, to)xzo > 0} s

Pellto, t4]) =~ / s,
N
U .

to

ol

0

0

t, X}, @
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Swept volume as union of semi-algebraic sets

Integration of a Gaussian PDF on a union of semi-algebraic sets: First Approach

Swept Volume

N
1. Outer-approximate the union K := |J K; by a polynomial super-level set (PSS) i.e.,
i=1
pa € R[z]q s.t.
K C PSSy, :={x:pa(x) > 1}.

2. Compute the integral of a Gaussian on a PSS

Reasons: Visualisation, better numerical behaviour, Gaussian on a PSS is holonomic...
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PSS for the swept volume |

Volume of a semi-algebraic set™

vol(K) = / drs(a),

K
{ B} T
Duality Optim. over polynomi-
als up to deg. d
w | v* = vol(K)
v* = Sl;pu(K) wy = inf [|p[1,
< pER[z]4
e
=N, o > 5
s p>1lonk
wn
18
a

SDP Programming

*Lasserre, Henrion; [DabbeneHenrionLagoa]
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PSS for the swept volume |l

Volume of union of semi-algebraic sets

i=1 N
U Ki
i=1
Duality
N
w } v* = vol U K;
N i=1
v = bupZm( i)
/"‘1. g=il
E i < Ag,
=1
Supp(“z) C Ky,
i > 0.

Lasserre, Henrion; [DabbeneHenrionLagoa]

Optim. over polynomi-
als up to deg. d

Wy = 1nf ]
= ot ol
. p > OonB,
5 p>lonk;.

13

SDP Programming
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Polynomial Approximations for the swept volume

(PSS) of fixed degree d:

~~ Polynomial optimization problem, LMI, SDP optimization
~ Prototype Implementation in Matlab

~ Tested on some cases [Alfano2009]

~~ Degree d = 4,6,8

~> Better results in 3D (less overestimation)
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Probability computation based on PSS

1. Implicit Representation of the integration domain by a PSS, .
2. Gaussian integration (3D or 6D), on PSS, :

~ Y @—om) P (@—Tm) g

1
e et () Ps's/p ¢

o For n = 3, adaptive Gauss quadrature for implicit domains [Saye2015] ;
e For n = 6, classical Monte-Carlo sampling.
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Swept volume as union of semi-algebraic sets

Integration of a Gaussian PDF on a union of semi-algebraic sets: Second Approach™

Pe =~ / po(zo)dzo, P

Optim.  over moment
seq. up to deg. d

Ry LR* =P

N N
r* = s:tllp 7;;1 i (K3) Ty = ?‘Tlllp ; mio
& Tnequalit st
Z p‘l S p, nequ.(l 1 y constr
= Localization
supp(ps) € Ki, SDP Mom matrix
i > 0. - .
fe = ~ Infinite dim. LP l
~mg; = [ 2ddp(z)
o SDP Programming

~» Need to compute the
moments of p.

TODO (2): efficient/reliable computation of moments of Gaussian on balls

*J.-B. Lasserre & Co-authors
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Examples

Case 7 of [Alfano2009]

(b) Instantaneous PoC with (in
(a) Miss distance (en m)  blue) or without (in red)
velocity uncertainty at TCA

(c) 3D Swept-volume (no

velocity uncertainty) (d) PSS Approximation d = 4

Figure — Test Case Alfano-7: Brute-force-PoC =0.000158 (10® samples) ; PoC =0.000165, with PSS

d =4, in 3D.

13 / 16



Examples

Case 9 of [Alfano2009]

(a) Miss distance (en m)

(d) 3D Swept-volume (no
velocity uncertainty)

(b) Instantaneous PoC with
velocity uncertainty at TCA

(e) PSS Approximation
(without velocity uncertainty)
d=38

(c) Instantaneous PoC without
velacitv nincartainty at TCA

Outer approximation

(f) Projection of PSS6D
approximation, d = 8, for a
specific velocity = mean
velocity at TCA.

Figure — Test Case Alfano-9; Brute-force-PoC-3D =0.287322, (10° samples); PoC =0.2825, for PSS
d = 8, in 3D; Brute-force-PoC-6D =0.36336 (10° samples); PoC =0.506297, for PSS d = 8, in 6D.
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Examples

Case 11 of [Alfano2009]

(b) Instantaneous PoC with (c) Instantaneous PoC without

(2) Miss distance (en m) velocity uncertainty at TCA velocity uncertainty at TCA

(f) Projection of PSS6D
(d) 3D Swept-volume (no (e) PSS Approximation (no approximation, d = 8, for a
velocity uncertainty) velocity uncertainty) d = 8 specific velocity = mean
velocity at TCA.

Figure — Test Case Alfano-11; Brute-force-PoC-3D=0.0026, same result for PSS d = 8, in 3D;
Brute-force-PoC-6D =0.0032 (105 samples); PoC =0.06239, PSS d = 8, in 6D.
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Conclusion

o Generalization of methods for calculating the probability of collision between two
spacecraft, for cases where the simplified 2D model is not realistic enough

o Several methods analyzed and proposed by trying to gradually increase both the modeling
and computation complexity

o Need for clarification between modeling and calculation method, validation of models and
validation of methods

o Significant work needed for the discrimination, analysis and evaluation of each type of
encounter

e TODO (1): "half-a-page" algorithm written in C to evaluate this with the required
accuracy

X% = {xo € RS | vp € R? and ||vg x ro]|2 < R||vol|2}-
1 Tp—1
75(10 —May)” Py (x0 — mag) ) dzo.

1
Pe= —r— / ex
(@m) Jdel(Pay) J T

XOO

@ TODO (2): efficient/reliable computation of moments of Gaussian on balls
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