
Algorithms for Manipulating Quaternions
in Floating-Point Arithmetic

Mioara Joldeş Jean-Michel Muller

Nuscap kick-off meeting – April 2021

1

William Rowan Hamilton (1805–1865)

around 1835, became fascinated by the
links between C and 2D geometry;

first tried to build “a 3D generalization of
C”. . . but cannot work with distributive
and associative ×:

add a new “number” j /∈ C and assume{︀
a+ ib + jc |(a, b, c) ∈ R3

}︀
is closed

under + and ×;
ji must be of the form a+ ib + jc ;
but this gives
j = (a+ ib)× (i − c)−1 ∈ C.

impossible even in a more general
context (Frobenius 1877).

2

And on the 16th october of 1843. . .

when walking to a meeting of
the royal Irish academy in
Dublin, found the solution;

hooligan-style, carved the
equations into the stone of
Brougham Bridge:

i2 = j2 = k2 = ijk = −1.

3

Quaternions

noncommutative field H: “numbers” of the form
q = q0 + q1i + q2j + q3k , with

q0, q1, q2, q3 ∈ R, “components” of q;
i , j and k follow the (noncommutative) multiplication rules:

× 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

scalar (or real) part q0, vector part q1i + q2j + q3k .

very trendy for a while;

rebirth in 2nd half of 20th century, with
applications in computer graphics, robotics,
aerospace. . .

TombRaider (1993) smooth 3D rotations. 4

Not so surprising. . .

x.y)

E-
A 3-D object. . .

ℛ =

⎛⎜⎝ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞⎟⎠
. . . Represented by 9 numbers?

5

Two interesting references

6

Operations on quaternions

scalar multiplication/division by a real number 𝜆;

addition of q = q0 + q1i + q2j + q3k and
r = r0 + r1i + r2j + r3k :

q + r = (q0 + r0) + (q1 + r1) · i + (q2 + r2) · j + (q3 + r3) · j ,

multiplication of q and r : q · r = 𝜋0 + 𝜋1i + 𝜋2j + 𝜋3k , with⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋0 = q0r0 − q1r1 − q2r2 − q3r3,

𝜋1 = q0r1 + q1r0 + q2r3 − q3r2,

𝜋2 = q0r2 − q1r3 + q2r0 + q3r1,

𝜋3 = q0r3 + q1r2 − q2r1 + q3r0.

7

Operations on quaternions

absolute value of q = q0 + q1i + q2j + q3k :

|q| =
√︁
q2
0 + q2

1 + q2
2 + q2

3 .

satisfies |q × q′| = |q| · |q′| (in fact, × built for that).
conjugate of q = q0 + q1i + q2j + q3k :

q = q0 − q1i − q2j − q3k.

It satisfies qq = |q|2.
→ reciprocal of q:

q−1 =
q

|q|2
.

× is not commutative → no unambiguous notion of division
→ avoid notation q/r (unless q ∈ R), since unclear if it is
q · r−1 or r−1 · q.

8

Quaternions viewed as R× R3

q0 + 0i + 0j + 0k identified with real number q0;

0 + q1i + q2j + q3k identified with vector (q1, q2, q3) of R3;

we write q = q0 + v , with v = iq1 + jk2 + kq3 = (q1, q2, q3);

q unit quaternion: |q| = 1. Gives q = cos 𝜃 + u · sin 𝜃, with
u = v

|v | ;

If q is a quaternion, what is the function of vectors

w → w ′ = qwq−1 (w ∈ R3)

R3 → R3 (one checks that real part of result is 0)
linear
|qwq−1| = |q| · |w | · |q−1| = |w | → isometry

9

Quaternions and 3D rotations

q = |q| · (cos 𝜃 + u · sin 𝜃), rotation of angle 2𝜃 and axis u;

if q is a unit quaternion then q−1 = q so that

w ′ = qwq.

q and −q represent the same rotation;

combination of rotations ↔ quaternion product:

q ↔ rotation 𝒬
r ↔ rotation ℛ

Performing 𝒬 then ℛ on w :

r
(︀
qwq−1)︀ r−1 = (rq)w

(︀
q−1r−1)︀ = (rq)w (rq)−1 .

r · q ↔ rotation ℛ ∘𝒬.

10

Fortunately they don’t commute. . .

11

Parameters of the underlying FP arithmetic

underlying radix-2, precision-p FP arithmetic, extremal
exponents emin and emax;

correctly-rounded (to nearest) FP operations, rounding
function RN;

largest finite FP number:

Ω = 2emax+1 − 2emax−p+1,

smallest positive nonzero number:

𝛼 = 2emin−p+1,

smallest positive normal number 2emin .

rounding unit u = 2−p.

12

Computing error bounds

define v = u/(1 + u);
for any t between 2emin and Ω, we have

|RN(t)− t| ≤ v · |t| =
(︂

u

1 + u

)︂
· |t| < u · |t|.

If q̂ = q̂0 + q̂1i + q̂2j + q̂3k approximates
q = q0 + q1i + q2j + q3k , then the componentwise relative
error is

max
n=0,...,3

⃒⃒⃒⃒
q̂n − qn

qn

⃒⃒⃒⃒
,

(if qn = q̂n = 0 then |(q̂n − qn)/qn| is replaced by 0), and the
normwise relative error is ⃒⃒⃒⃒

q̂ − q

q

⃒⃒⃒⃒
,

(if q = q̂ = 0 then the normwise error is 0).
13

We will use several norms

absolute value |q| = ‖q‖2 =
√︁
q2
0 + q2

1 + q2
2 + q2

3 ;

infinite norm

‖q‖∞ = max{|q0|, |q1|, |q2|, |q3|},

1-norm
‖q‖1 = |q0|+ |q1|+ |q2|+ |q3|.

They satisfy: ⎧⎪⎨⎪⎩
‖q‖∞ ≤ |q| ≤ 2 · ‖q‖∞,

‖q‖∞ ≤ ‖q‖1 ≤ 4 · ‖q‖∞,

|q| ≤ ‖q‖1 ≤ 2 · |q|.

14

They all have their interest

| · | = ‖ · ‖2 is the natural norm of quaternions, the one that
satisfies |a · b| = |a| · |b|;
‖ · ‖∞ is the natural norm for overflow avoidance/detection;

‖ · ‖1 is the fastest to compute, it is computed without risk of
spurious overflow/underflow;

on my laptop (Intel Core i5 under MacOS, compiled under
XCode):

time | · |
time ‖ · ‖1

≈ 1.06
time ‖ · ‖∞
time ‖ · ‖1

≈ 1.76

15

Scaling a quaternion

some libraries implement the naive formulas for ×, | · | and q−1;

not a problem if input operands in a domain in which overflow
& underflow are impossible or harmless (e.g., we only
manipulate unit quaternions);

otherwise: risk of spurious underflow or overflow → NaNs,
infinities, or very inaccurate results.

To avoid spurious under/overflow: scaling techniques, quite similar
to the ones used in complex arithmetic.

16

Scaling a quaternion

q = q0 + q1i + q2j + q3k , where q0, q1, q2, and q3 are FP
numbers;

compute a (real) scaling factor F such that
F is a power of 2 (→ multiplication by F is errorless);
‖q/F‖∞ is not far from, and below, 1 (typically, will be
between 1/16 and 1).

We can use two functions specified by the IEEE 754 Std:
scaleB(x , k): returns x · 2k (where x is a FP number and k is
an integer). Called scalbn in the C language;
logB(x): returns ⌊log2 |x |⌋ (where x is a FP number).Called
logb in C;
if slow, there are other solutions.

17

Scaling a quaternion

natural solution: scaling factor = power of 2 immediately
larger than max{|q0|, |q1|, |q2|, |q3|}, i.e.,

F∞(q) = 2⌊log2 ‖q‖∞⌋+1.

on many recent architectures, |q0|+ |q1|+ |q2|+ |q3|
computed more quickly than ‖q‖∞ → rather use

F1(q) = 2⌊log2 ‖q‖1⌋+1.

The definition of F∞ implies that
1
2
≤ max

i=1,...,4

|qi |
F∞(q)

< 1,

From which we deduce
1
8
≤ max

i=1,...,4

|qi |
F1(q)

< 1.

18

Computing the absolute value of a quaternion

q = q0 + q1i + q2j + q3k , where q0, q1, q2, and q3 are FP
numbers

naive algorithm:

1: ŝ0 ← RN(q2
0)

2: ŝ1 ← RN(q2
1)

3: ŝ2 ← RN(q2
2)

4: ŝ3 ← RN(q2
3)

5: 𝜎0 ← RN(ŝ0 + ŝ1)

6: 𝜎1 ← RN(ŝ2 + ŝ3)

7: �̂� ← RN(𝜎0 + 𝜎1)

8: N̂ ← RN(
√
�̂�)

9: return N̂

19

Remarks on the naive absolute value algorithm

spurious overflow may occur: binary32 arithmetic, q0 = 265,
q1 = q2 = q3 = 0, gives |q| = 265 and N̂ = +∞;

spurious underflow may occur, but is an issue only when all
|qi |s are small (otherwise underflowing terms ≪ largest one).
Binary32 arithmetic, q0 = (3/2)× 2−75 and
q1 = q2 = q3 = 0, gives |q| = q0 ≈ 3.97× 10−23, and
N̂ = 11863283/298 ≈ 3.74× 10−23;

first, error analysis, assuming no under/overflow.

20

Analysis of the naive absolute value algorithm

1: ŝ0 ← RN(q2
0)

2: ŝ1 ← RN(q2
1)

3: ŝ2 ← RN(q2
2)

4: ŝ3 ← RN(q2
3)

5: 𝜎0 ← RN(ŝ0 + ŝ1)

6: 𝜎1 ← RN(ŝ2 + ŝ3)

7: �̂� ← RN(𝜎0 + 𝜎1)

8: N̂ ← RN(
√
�̂�)

9: return N̂

∀i , si (1− v) ≤ ŝi ≤ si (1 + v),

⇒ ∀i , 𝜎i (1− v)2 ≤ 𝜎i ≤ 𝜎i (1 + v)2,

⇒ 𝜎(1− v)3 ≤ �̂� ≤ 𝜎(1 + v)3.

⇒
√
𝜎(1− v)3/2 ≤

√
�̂� ≤
√
𝜎(1 + v)3/2,

⇒ N(1− v)5/2 ≤ N̂ = RN(
√
�̂�) ≤ N(1+ v)5/2.

Barring underflow or overflow, relative error

bounded by (1+ v)5/2 − 1, which is < (5/2)u.

21

Scaling the absolute value algorithm

we divide q0, q1, q2 and q3 by F = F1(q) or F∞(q) (whichever
is the fastest to compute);

→ new input values q′0, q
′
1, q

′
2 and q′3;

→ no division: we compute c = logB(‖q‖1) + 1 or
logB(‖q‖∞) + 1, and

q′n = scaleB(qn,−c).

We obtain
1
8
≤ max{|q′0|, |q′1|, |q′2|, |q′3|} ≤ 1.

We apply the naive algorithm to the scaled inputs, and muliply
the obtained result by F ;
Spurious overflow can no longer happen, underflow is harmless;
Same error bound. 22

Computing the product of two quaternions

Naive solution: direct translation of the multiplication formula⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̂�0 = RN
(︁
RN

(︀
RN(q0r0)− RN(q1r1)

)︀
− RN

(︀
RN(q2r2) + RN(q3r3)

)︀)︁
�̂�1 = RN

(︁
RN

(︀
RN(q0r1) + RN(q1r0)

)︀
+ RN

(︀
RN(q2r3)− RN(q3r2)

)︀)︁
�̂�2 = RN

(︁
RN

(︀
RN(q0r2)− RN(q1r3)

)︀
+ RN

(︀
RN(q2r0) + RN(q3r1)

)︀)︁
�̂�3 = RN

(︁
RN

(︀
RN(q0r3) + RN(q1r2)

)︀
− RN

(︀
RN(q2r1)− RN(q3r0)

)︀)︁
No underflow or overflow → |𝜋n − �̂�n| ≤ u · |𝜋n|+ (2u + u2) ·Mn.

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
M0 = |q0r0|+ |q1r1|+ |q2r2|+ |q3r3|
M1 = |q0r1|+ |q1r0|+ |q2r3|+ |q3r2|
M2 = |q0r2|+ |q1r3|+ |q2r0|+ |q3r1|
M3 = |q0r3|+ |q1r2|+ |q2r1|+ |q3r0|.

23

Computing the product of two quaternions

After some manipulation, gives:

|𝜋 − �̂�|
|𝜋|

≤
√︀

33v2 + 72v3 + 60v4 + 24v5 + 4v6

→ Normwise relative error bound
√

33 · u + u2 ≈ 5.75u + u2.

Scaling: done as for the absolute value.

24

Multiplication using Ogita, Rump and Oishi’s’s dot product

2Sum(x , y).

s ← RN(x + y)

x ′ ← RN(s − y)

y ′ ← RN(s − x ′)

𝛿x ← RN(x − x ′)

𝛿y ← RN(y − y ′)

t ← RN(𝛿x + 𝛿y)

return (s, t)

Fast2Mult(x , y).

w ← RN(xy)

e ← RN(xy − w)

return (w , e)

25

Multiplication using Ogita, Rump and Oishi’s’s dot product

Computation of 𝜋0:
1: (s0, e0)← Fast2Mult(q0, r0)

2: (s1, e1)← Fast2Mult(−q1, r1)

3: (s2, e2)← Fast2Mult(−q2, r2)

4: (s3, e3)← Fast2Mult(−q3, r3)

5: 𝜎 ← e0
6: S ← s0
7: for i = 1 to 3 do
8: (S , 𝜌)← 2Sum(S , si)

9: 𝜎 ← RN(𝜎 + RN(𝜌+ ei))

10: end for
11: �̂�0 ← RN(S + 𝜎)

12: return �̂�0

When no underflow or overflow oc-
curs, �̂�0, �̂�1, �̂�2, and �̂�3 satisfy

|𝜋n − �̂�n| ≤ u·|𝜋n|+
1
2

(︂
4u

1− 4u

)︂2

·Mn.

→ much better bound than the naive
algorithm when Mn/|𝜋n| is large.

Normwise relative error bound: u +

32u2.

26

Reciprocal computed as q/|q|2

componentwise and normwise relative errors ≤ 4u+ 5u2 + 2u3;

scaling q by F1(q)→ no overflows, harmless underflow (for
the normwise error).

27

Example: CNES Patrius Library

File Quaternion.java

28

Conversion from/to rotation matrices

Rotation matrix

ℛ =

⎛⎜⎝ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞⎟⎠
Unit quaternion q0 + q1i + q2j + q3k

associated to the same rotation.
Conversions ?

We have:

ℛ = 2 ×

⎛⎜⎝ (q2
0 + q2

1)− 1
2 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 (q2
0 + q2

2)− 1
2 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 (q2
0 + q2

3)− 1
2

⎞⎟⎠ . (1)

(if not unit quaternion, divide by q2
0 + q2

1 + q2
2 + q2

3)

29

Quaternion to matrix: naive implementation of (1)

Applying (1) naively can lead to large componentwise relative error.

Example: q0 = 1/2 − u, q1 = 1/2 + u, r̂11 = RN(2 · RN(RN(q2
0) +

RN(q2
1))− 1) gives r̂11 = 0 whereas r11 = 4u2;

In practice, the normwise relative error is small: we wish to show
that;

choice of matrix norm:

‖ℛ‖∞ = max
i,j
|ℛij |

before we start, an almost ethical problem: really, what is the input?

30

After all, what is a unit quaternion?

“official” answer:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (2)

Property (2) may be heavily used:
by the algorithm: e.g., we compute r22 as 2(q2

0 + q2
1)− 1

instead of 1− 2(q2
1 + q2

3) to have the same common term
2q2

0 − 1 everywhere in the diagonal;
to compute error bounds: take as example the computation of
q2

0 + q2
1 ,

computation of the squares: at least one of q2
0 and q2

1 is
≤ 1/2, so error ≤ u/4 for this one, and ≤ u/2 for the other
one;
summing the squares: result ≤ 1 → error ≤ u/2 for the
addition;
total error ≤ u/4 + u/2 + u/2 = 5u/4.

for nontrivial cases, Property (2) is never satisfied!
31

After all, what is a unit quaternion?

Remark 1
The only unit quaternions whose components are floating-point
numbers are ±1, ±i , ±j , ±k and the numbers
±1

2 ±
1
2 · i ±

1
2 · j ±

1
2 · k .

Lemma 1
A sum of 3 squares of integers modulo 8 never equals 7.

Proof of the Lemma: one can invoke Legendre’s 3 squares
theorem: n can be written x2 + y2 + z2 iff it is not of the form
4p(8q + 7).

But a simpler solution is to notice that x2 mod 8 ∈ {0, 1, 4}, and
three such numbers cannot add up to 7.

32

After all, what is a unit quaternion?

proof of the remark:

q0 + q1i + q2j + q3k , with
q2

0 + q2
1 + q2

2 + q2
3 = 1

the qi s exact in finite-precision binary arithmetic.

Let t be the smallest integer such that all q′i s are multiple of
2−t .
We assume t ≥ 2 (the cases 0 and 1 are processed
exhaustively and lead to the cases given in the remark).
define

Qi = 2tqi ∈ Z,

we have
Q2

0 + Q2
1 + Q2

2 + Q2
3 = 22t .

t smallest → at least one of the Qi s is odd. Without l.o.g.,
assume it is Q0. 33

After all, what is a unit quaternion?

so far, we have

Q2
0 + Q2

1 + Q2
2 + Q2

3 = 22t .

with Q0 odd.

Q2
0 = 1 mod 8

t ≥ 2→ 22t multiple of 8.

hence, we need Q2
1 + Q2

2 + Q2
3 = 7 mod 8, which is

impossible from the lemma.

34

Error of unit quaternion → rotation matrix conversion

Reminder: we want to implement

ℛ = 2 ×

⎛⎜⎝ (q2
0 + q2

1)− 1
2 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 (q2
0 + q2

2)− 1
2 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 (q2
0 + q2

3)− 1
2

⎞⎟⎠ . (1)

assume q2
0 + q2

1 + q2
2 + q2

3 = 1? It (almost) never happens;

assume we implement transformation (1) for any input
quaternion? But the transformation is meaningless for
“general” quaternions, and we will get over-pessimistic results.

→ assume q2
0 + q2

1 + q2
2 + q2

3 = 1 + 𝜖 for |𝜖| less than some
“reasonable” bound?

35

Assuming q2
0 + q2

1 + q2
2 + q2

3 = 1

absolute error on each component ≤ 3u;

→ if ℛ̂ is the computed value of ℛ,

‖ℛ̂ − ℛ‖∞
‖ℛ‖∞

≤ 3u
‖ℛ‖∞

.

ℛ is a rotation matrix → it is orthogonal: the sum of the
squares of the elements of any column in ℛ is 1

→ at least one element has absolute value ≥ 1/
√

3;

→ ‖ℛ‖∞ ≥
√

3/3.
(lower bound on the inf. norm of a rotation matrix?)

Therefore, the normwise relative error is bounded by

3
√

3u ≤ 5.197u.

36

Assuming q2
0 + q2

1 + q2
2 + q2

3 = 1 + 𝜖

ℛ̂ computed value;

ℛ exact matrix associated to the uaternion q (i.e., exact
formula (1) and division by q2

0 + q2
1 + q2

2 + q2
3);

ℛ* exact formula (1).

‖ℛ̂ − ℛ‖∞ ≤ ‖ℛ̂ −ℛ*‖∞ + ‖ℛ* −ℛ‖∞
≤ 3u × 2 + |𝜖| · ‖ℛ‖∞
≤

(︀
6
√

3u + |𝜖|
)︀
· ‖ℛ‖∞.

37

Rotation matrix → quaternion conversion

significantly more difficult;

several solutions suggested. Good reference:
S. Sarabandi and F. Thomas, A Survey on the Computation of

Quaternions From Rotation Matrices. Journal of Mechanisms

and Robotics, 11(2), 03 2019.

We analyse one possible solution, employed in the Patrius
Library of CNES;

same problem as previously: what is a floating-point rotation
matrix?
In general, there’s nothing such as the exact solution.

38

Rotation matrix → quaternion conversion

remember: the rotation matrix is

ℛ = 2 ×

⎛⎜⎝ (q2
0 + q2

1)− 1
2 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 (q2
0 + q2

2)− 1
2 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 (q2
0 + q2

3)− 1
2

⎞⎟⎠ . (1)

First, (1) implies

|q0| = 1
2

√
1 + r11 + r22 + r33,

|q1| = 1
2

√
1 + r11 − r22 − r33,

|q2| = 1
2

√
1− r11 + r22 − r33,

|q3| = 1
2

√
1− r11 − r22 + r33.

(3)

We choose q0 > 0. To be consistent q1 has the sign of
r32 − r23, q2 has the sign of r13 − r31, and q3 has the sign of
r21 − r12;
Straightforward use of (3) → possible large inaccuracies if one
of the terms ±r11 ± r22 ± r33 is close to −1.

39

Rotation matrix → quaternion conversion

Remember:
|q0| = 1

2

√
1 + r11 + r22 + r33,

|q1| = 1
2

√
1 + r11 − r22 − r33,

|q2| = 1
2

√
1 − r11 + r22 − r33,

|q3| = 1
2

√
1 − r11 − r22 + r33.

(3)

norm of the “exact” quaternion 1→ at least one of its
components has absolute value ≥ 1/2;
For that component, the corresponding value of
±r11 ± r22 ± r33 in (3) is ≥ 0.

→ compute that component using (3), and then deduce the other
components using:

4q2q3 = r23 + r32,
4q1q3 = r31 + r13,
4q1q2 = r21 + r12,
4q0q1 = r32 − r23,
4q0q2 = r13 − r31,
4q0q3 = r21 − r12.

(4)

40

Rotation matrix → quaternion conversion

start by successively computing the terms ±r11± r22± r33 that
appear in Eq. (3) as RN(±r11 ± RN(r22 ± r33));
As soon as we have found a term strictly > 𝜂:

obtain the component corresponding to that term using (3);
deduce the other terms using (4).

threshold 𝜂:
selected based on statistical trials (Sarabandi 2019);
CNES Patrius Library: 𝜂 = −0.19;
our analysis: 𝜂 = −2−e , for e ∈ N, 0 < e < p.

Theorem 2

When 𝜂 = −1/8 and as soon as p ≥ 7, the componentwise relative
error of computing the quaternion coefficients from the rotation
matrix coefficients using the method presented here is bounded by
41
7 u + 40u2.

41

And beyond quaternions?

there are the Octonions (Graves/Cayley) if you are ready to
live with a non-associative ×;

and that’s it (Hurwitz theorem): the only values of n for which
there exists an identity

(x2
1 + x2

2 + · · ·+ x2
n)(y

2
1 + y2

2 + · · ·+ y2
n) = (z2

1 + z2
2 + · · ·+ z2

n)

where zi is bilinear (linear both in x and y) are 1, 2, 4, and 8.

42

