Algorithms for Manipulating Quaternions in Floating-Point Arithmetic

Mioara Joldeș Jean-Michel Muller

Nuscap kick-off meeting - April 2021

William Rowan Hamilton (1805–1865)

- around 1835, became fascinated by the links between C and 2D geometry;
- first tried to build "a 3D generalization of C"... but cannot work with distributive and associative ×:
 - add a new "number" j ∉ C and assume
 {a + ib + jc|(a, b, c) ∈ R³} is closed
 under + and ×;
 - ji must be of the form a + ib + jc;
 - but this gives

 $j = (a + ib) \times (i - c)^{-1} \in \mathbb{C}.$

• impossible even in a more general context (Frobenius 1877).

And on the 16th october of 1843...

- when walking to a meeting of the royal Irish academy in Dublin, found the solution;
- hooligan-style, carved the equations into the stone of Brougham Bridge:

$$i^2 = j^2 = k^2 = ijk = -1.$$

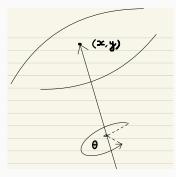
Quaternions

 \bullet noncommutative field $\mathbb{H}:$ "numbers" of the form

 $q = q_0 + q_1 i + q_2 j + q_3 k$, with

- q_0 , q_1 , q_2 , $q_3 \in \mathbb{R}$, "components" of q;
- *i*, *j* and *k* follow the (noncommutative) multiplication rules:

- scalar (or real) part q_0 , vector part $q_1i + q_2j + q_3k$.
- very trendy for a while;
- rebirth in 2nd half of 20th century, with applications in computer graphics, robotics, aerospace...
- TombRaider (1993) smooth 3D rotations.

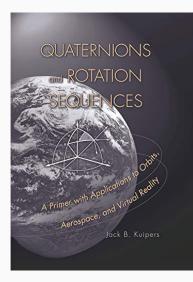


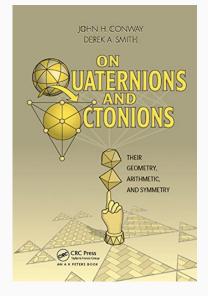
$$\mathcal{R} = \left(\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array} \right)$$

... Represented by 9 numbers?

A 3-D object...

Two interesting references





Operations on quaternions

• scalar multiplication/division by a real number λ ;

• addition of
$$q = q_0 + q_1i + q_2j + q_3k$$
 and
 $r = r_0 + r_1i + r_2j + r_3k$:

$$q + r = (q_0 + r_0) + (q_1 + r_1) \cdot i + (q_2 + r_2) \cdot j + (q_3 + r_3) \cdot j,$$

• multiplication of q and r: $q \cdot r = \pi_0 + \pi_1 i + \pi_2 j + \pi_3 k$, with

$$\begin{cases} \pi_0 = q_0 r_0 - q_1 r_1 - q_2 r_2 - q_3 r_3, \\ \pi_1 = q_0 r_1 + q_1 r_0 + q_2 r_3 - q_3 r_2, \\ \pi_2 = q_0 r_2 - q_1 r_3 + q_2 r_0 + q_3 r_1, \\ \pi_3 = q_0 r_3 + q_1 r_2 - q_2 r_1 + q_3 r_0. \end{cases}$$

Operations on quaternions

• absolute value of
$$q = q_0 + q_1i + q_2j + q_3k$$
:
$$|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

- satisfies $|q \times q'| = |q| \cdot |q'|$ (in fact, \times built for that).
- conjugate of $q = q_0 + q_1 i + q_2 j + q_3 k$:

$$\overline{q} = q_0 - q_1 i - q_2 j - q_3 k.$$

It satisfies $q\overline{q} = |q|^2$.

 \rightarrow reciprocal of *q*:

$$q^{-1} = \frac{\overline{q}}{|q|^2}.$$

• × is not commutative \rightarrow no unambiguous notion of division \rightarrow avoid notation q/r (unless $q \in \mathbb{R}$), since unclear if it is $q \cdot r^{-1}$ or $r^{-1} \cdot q$.

Quaternions viewed as $\mathbb{R} \times \mathbb{R}^3$

- $q_0 + 0i + 0j + 0k$ identified with real number q_0 ;
- $0 + q_1i + q_2j + q_3k$ identified with vector (q_1, q_2, q_3) of \mathbb{R}^3 ;
- we write $q = q_0 + v$, with $v = iq_1 + jk_2 + kq_3 = (q_1, q_2, q_3)$;
- q unit quaternion: |q| = 1. Gives $q = \cos \theta + u \cdot \sin \theta$, with $u = \frac{v}{|v|}$;
- If q is a quaternion, what is the function of vectors

$$w o w' = qwq^{-1} \quad (w \in \mathbb{R}^3)$$

- $\bullet~\mathbb{R}^3 \to \mathbb{R}^3$ (one checks that real part of result is 0)
- linear
- $|qwq^{-1}| = |q| \cdot |w| \cdot |q^{-1}| = |w| \rightarrow \text{isometry}$

Quaternions and 3D rotations

- $q = |q| \cdot (\cos \theta + u \cdot \sin \theta)$, rotation of angle 2θ and axis u;
- if q is a unit quaternion then $q^{-1} = \overline{q}$ so that

 $w' = qw\overline{q}.$

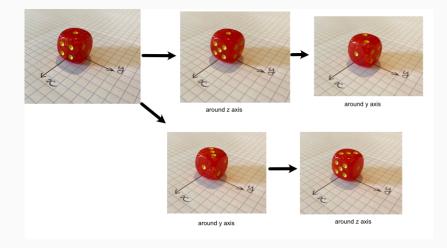
- q and -q represent the same rotation;
- \bullet combination of rotations \leftrightarrow quaternion product:

 $\begin{array}{ccc} q & \leftrightarrow & ext{rotation } \mathcal{Q} \\ r & \leftrightarrow & ext{rotation } \mathcal{R} \end{array}$

Performing Q then \mathcal{R} on w:

$$r(qwq^{-1}) r^{-1} = (rq) w(q^{-1}r^{-1}) = (rq) w(rq)^{-1}.$$
$$r \cdot q \leftrightarrow \text{rotation } \mathcal{R} \circ \mathcal{Q}.$$

Fortunately they don't commute...



Parameters of the underlying FP arithmetic

- underlying radix-2, precision-p FP arithmetic, extremal exponents e_{min} and e_{max};
- correctly-rounded (to nearest) FP operations, rounding function RN;
- largest finite FP number:

$$\Omega = 2^{e_{\max}+1} - 2^{e_{\max}-p+1},$$

• smallest positive nonzero number:

$$\alpha = 2^{e_{\min} - p + 1},$$

- smallest positive normal number 2^{*e*min}.
- rounding unit $u = 2^{-p}$.

Computing error bounds

• define
$$v = u/(1+u)$$
;

• for any t between $2^{e_{\min}}$ and Ω , we have

$$|\mathsf{RN}(t) - t| \le v \cdot |t| = \left(\frac{u}{1+u}\right) \cdot |t| < u \cdot |t|.$$

• If $\hat{q} = \hat{q}_0 + \hat{q}_1 i + \hat{q}_2 j + \hat{q}_3 k$ approximates $q = q_0 + q_1 i + q_2 j + q_3 k$, then the componentwise relative error is

$$\max_{n=0,\ldots,3}\left|\frac{\hat{q}_n-q_n}{q_n}\right|,$$

(if $q_n = \hat{q}_n = 0$ then $|(\hat{q}_n - q_n)/q_n|$ is replaced by 0), and the normwise relative error is

$$\left|\frac{\hat{q}-q}{q}\right|,$$

(if $q = \hat{q} = 0$ then the normwise error is 0).

We will use several norms

- absolute value $|q| = ||q||_2 = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2};$
- infinite norm

$$\|q\|_{\infty} = \max\{|q_0|, |q_1|, |q_2|, |q_3|\},\$$

• 1-norm

$$||q||_1 = |q_0| + |q_1| + |q_2| + |q_3|.$$

They satisfy:

$$\left\{ egin{array}{ccccc} \|q\|_{\infty} &\leq & |q| &\leq & 2 \cdot \|q\|_{\infty}, \ \|q\|_{\infty} &\leq & \|q\|_1 &\leq & 4 \cdot \|q\|_{\infty}, \ |q| &\leq & \|q\|_1 &\leq & 2 \cdot |q|. \end{array}
ight.$$

- $|\cdot| = ||\cdot||_2$ is the natural norm of quaternions, the one that satisfies $|a \cdot b| = |a| \cdot |b|$;
- $\|\cdot\|_{\infty}$ is the natural norm for overflow avoidance/detection;
- || · ||₁ is the fastest to compute, it is computed without risk of spurious overflow/underflow;
- on my laptop (Intel Core i5 under MacOS, compiled under XCode):

$$\frac{\mathsf{time} \mid \cdot \mid}{\mathsf{time} \mid \mid \cdot \mid_{1}} \approx 1.06 \qquad \frac{\mathsf{time} \mid \mid \cdot \mid_{\infty}}{\mathsf{time} \mid \mid \cdot \mid_{1}} \approx 1.76$$

- some libraries implement the naive formulas for \times , $|\cdot|$ and q^{-1} ;
- not a problem if input operands in a domain in which overflow & underflow are impossible or harmless (e.g., we only manipulate unit quaternions);
- otherwise: risk of spurious underflow or overflow \rightarrow NaNs, infinities, or very inaccurate results.

To avoid spurious under/overflow: scaling techniques, quite similar to the ones used in complex arithmetic.

Scaling a quaternion

- $q = q_0 + q_1i + q_2j + q_3k$, where q_0 , q_1 , q_2 , and q_3 are FP numbers;
- compute a (real) scaling factor F such that
 - F is a power of 2 (\rightarrow multiplication by F is errorless);
 - $||q/F||_{\infty}$ is not far from, and below, 1 (typically, will be between 1/16 and 1).
- We can use two functions specified by the IEEE 754 Std:
 - scaleB(x, k): returns x · 2^k (where x is a FP number and k is an integer). Called scalbn in the C language;
 - logB(x): returns ⌊log₂ |x|⌋ (where x is a FP number).Called logb in C;
 - if slow, there are other solutions.

Scaling a quaternion

• natural solution: scaling factor = power of 2 immediately larger than max{ $|q_0|, |q_1|, |q_2|, |q_3|$ }, i.e.,

 $F_{\infty}(q) = 2^{\lfloor \log_2 \|q\|_{\infty} \rfloor + 1}.$

• on many recent architectures, $|q_0| + |q_1| + |q_2| + |q_3|$ computed more quickly than $||q||_{\infty} \rightarrow$ rather use

 $F_1(q) = 2^{\lfloor \log_2 \|q\|_1 \rfloor + 1}.$

• The definition of F_{∞} implies that

$$rac{1}{2} \leq \max_{i=1,...,4} rac{|q_i|}{\mathcal{F}_\infty(q)} < 1,$$

From which we deduce

$$rac{1}{8} \leq \max_{i=1,...,4} rac{|q_i|}{F_1(q)} < 1.$$

Computing the absolute value of a quaternion

- $q = q_0 + q_1i + q_2j + q_3k$, where q_0 , q_1 , q_2 , and q_3 are FP numbers
- naive algorithm:
- 1: $\hat{s}_0 \leftarrow \text{RN}(q_0^2)$ 2: $\hat{s_1} \leftarrow \text{RN}(q_1^2)$ 3: $\hat{s}_2 \leftarrow \text{RN}(q_2^2)$ 4: $\hat{s}_3 \leftarrow \text{RN}(q_3^2)$ 5: $\hat{\sigma}_0 \leftarrow \mathsf{RN}(\hat{s}_0 + \hat{s}_1)$ 6: $\hat{\sigma}_1 \leftarrow \mathsf{RN}(\hat{s}_2 + \hat{s}_3)$ 7: $\hat{\sigma} \leftarrow \mathsf{RN}(\hat{\sigma}_0 + \hat{\sigma}_1)$ 8: $\hat{N} \leftarrow \text{RN}(\sqrt{\hat{\sigma}})$ 9: return \hat{N}

- spurious overflow may occur: binary32 arithmetic, $q_0 = 2^{65}$, $q_1 = q_2 = q_3 = 0$, gives $|q| = 2^{65}$ and $\hat{N} = +\infty$;
- spurious underflow may occur, but is an issue only when *all* $|q_i|$ s are small (otherwise underflowing terms \ll largest one). Binary32 arithmetic, $q_0 = (3/2) \times 2^{-75}$ and $q_1 = q_2 = q_3 = 0$, gives $|q| = q_0 \approx 3.97 \times 10^{-23}$, and $\hat{N} = 11863283/2^{98} \approx 3.74 \times 10^{-23}$;
- first, error analysis, assuming no under/overflow.

 $\forall i, s_i(1-v) < \hat{s}_i < s_i(1+v).$ 1: $\hat{s}_0 \leftarrow \text{RN}(q_0^2)$ 2: $\hat{s_1} \leftarrow \text{RN}(q_1^2)$ $\Rightarrow \forall i, \sigma_i (1-v)^2 < \hat{\sigma}_i < \sigma_i (1+v)^2.$ 3: $\hat{s}_2 \leftarrow \text{RN}(q_2^2)$ $\Rightarrow \sigma(1-v)^3 < \hat{\sigma} < \sigma(1+v)^3.$ 4: $\hat{s}_3 \leftarrow \text{RN}(q_2^2)$ 5: $\hat{\sigma}_0 \leftarrow \mathsf{RN}(\hat{s}_0 + \hat{s}_1)$ $\Rightarrow \sqrt{\sigma}(1-v)^{3/2} < \sqrt{\hat{\sigma}} < \sqrt{\sigma}(1+v)^{3/2}$ 6: $\hat{\sigma}_1 \leftarrow \mathsf{RN}(\hat{s}_2 + \hat{s}_3)$ $\Rightarrow N(1-v)^{5/2} < \hat{N} = RN(\sqrt{\hat{\sigma}}) < N(1+v)^{5/2}.$ 7: $\hat{\sigma} \leftarrow \mathsf{RN}(\hat{\sigma}_0 + \hat{\sigma}_1)$ 8: $\hat{N} \leftarrow \text{RN}(\sqrt{\hat{\sigma}})$ Barring underflow or overflow, relative error 9: return \hat{N} bounded by $(1 + v)^{5/2} - 1$, which is < (5/2)u.

Scaling the absolute value algorithm

- we divide q_0 , q_1 , q_2 and q_3 by $F = F_1(q)$ or $F_{\infty}(q)$ (whichever is the fastest to compute);
- ightarrow new input values $q_0^\prime,~q_1^\prime,~q_2^\prime$ and $q_3^\prime;$
- ightarrow no division: we compute $c = \log \mathsf{B}(\|q\|_1) + 1$ or $\log \mathsf{B}(\|q\|_\infty) + 1$, and

 $q'_n = \operatorname{scaleB}(q_n, -c).$

We obtain

$$\frac{1}{8} \leq \max\{|q_0'|, |q_1'|, |q_2'|, |q_3'|\} \leq 1.$$

- We apply the naive algorithm to the scaled inputs, and muliply the obtained result by *F*;
- Spurious overflow can no longer happen, underflow is harmless;
- Same error bound.

Computing the product of two quaternions

Naive solution: direct translation of the multiplication formula

$$\begin{aligned} \hat{\pi}_{0} &= \text{RN}\Big(\text{RN}\big(\text{RN}(q_{0}r_{0}) - \text{RN}(q_{1}r_{1})\big) - \text{RN}\big(\text{RN}(q_{2}r_{2}) + \text{RN}(q_{3}r_{3})\big)\Big) \\ \hat{\pi}_{1} &= \text{RN}\Big(\text{RN}\big(\text{RN}(q_{0}r_{1}) + \text{RN}(q_{1}r_{0})\big) + \text{RN}\big(\text{RN}(q_{2}r_{3}) - \text{RN}(q_{3}r_{2})\big)\Big) \\ \hat{\pi}_{2} &= \text{RN}\Big(\text{RN}\big(\text{RN}(q_{0}r_{2}) - \text{RN}(q_{1}r_{3})\big) + \text{RN}\big(\text{RN}(q_{2}r_{0}) + \text{RN}(q_{3}r_{1})\big)\Big) \\ \hat{\pi}_{3} &= \text{RN}\Big(\text{RN}\big(\text{RN}(q_{0}r_{3}) + \text{RN}(q_{1}r_{2})\big) - \text{RN}\big(\text{RN}(q_{2}r_{1}) - \text{RN}(q_{3}r_{0})\big)\Big) \end{aligned}$$

No underflow or overflow $\rightarrow |\pi_n - \hat{\pi}_n| \leq u \cdot |\pi_n| + (2u + u^2) \cdot M_n$. with

$$\begin{cases}
M_0 &= |q_0r_0| + |q_1r_1| + |q_2r_2| + |q_3r_3| \\
M_1 &= |q_0r_1| + |q_1r_0| + |q_2r_3| + |q_3r_2| \\
M_2 &= |q_0r_2| + |q_1r_3| + |q_2r_0| + |q_3r_1| \\
M_3 &= |q_0r_3| + |q_1r_2| + |q_2r_1| + |q_3r_0|.
\end{cases}$$

After some manipulation, gives:

$$\frac{|\pi - \hat{\pi}|}{|\pi|} \le \sqrt{33\nu^2 + 72\nu^3 + 60\nu^4 + 24\nu^5 + 4\nu^6}$$

 \rightarrow Normwise relative error bound $\sqrt{33} \cdot u + u^2 \approx 5.75u + u^2$.

Scaling: done as for the absolute value.

2Sum(x, y).

$$s \leftarrow \text{RN}(x + y)$$

$$x' \leftarrow \text{RN}(s - y)$$

$$y' \leftarrow \text{RN}(s - x')$$

$$\delta_x \leftarrow \text{RN}(x - x')$$

$$\delta_y \leftarrow \text{RN}(y - y')$$

$$t \leftarrow \text{RN}(\delta_x + \delta_y)$$

return (s, t)

Fast2Mult(x, y).

 $w \leftarrow \mathsf{RN}(xy)$ $e \leftarrow \mathsf{RN}(xy - w)$ return (w, e)

Computation of π_0 :

1: $(s_0, e_0) \leftarrow \mathsf{Fast2Mult}(q_0, r_0)$ 2: $(s_1, e_1) \leftarrow \mathsf{Fast2Mult}(-q_1, r_1)$ 3: $(s_2, e_2) \leftarrow \text{Fast2Mult}(-q_2, r_2)$ 4: $(s_3, e_3) \leftarrow \mathsf{Fast2Mult}(-q_3, r_3)$ 5: $\sigma \leftarrow e_0$ 6: $S \leftarrow s_0$ 7: for i = 1 to 3 do 8: $(S, \rho) \leftarrow 2Sum(S, s_i)$ 9: $\sigma \leftarrow \mathsf{RN}(\sigma + \mathsf{RN}(\rho + e_i))$ 10: end for 11: $\hat{\pi}_0 \leftarrow \mathsf{RN}(S + \sigma)$ 12: return $\hat{\pi}_0$

When no underflow or overflow occurs, $\hat{\pi}_0$, $\hat{\pi}_1$, $\hat{\pi}_2$, and $\hat{\pi}_3$ satisfy

$$|\pi_n - \hat{\pi}_n| \leq u \cdot |\pi_n| + \frac{1}{2} \left(\frac{4u}{1-4u}\right)^2 \cdot M_n.$$

 \rightarrow much better bound than the naive algorithm when $M_n/|\pi_n|$ is large. Normwise relative error bound: $u + 32u^2$.

- componentwise and normwise relative errors $\leq 4u + 5u^2 + 2u^3$;
- scaling q by $F_1(q) \rightarrow$ no overflows, harmless underflow (for the normwise error).

Example: CNES Patrius Library

File Quaternion.java

Rotation matrix

$$\mathcal{R} = \left(\begin{array}{rrrr} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array}\right)$$

Unit quaternion $q_0 + q_1i + q_2j + q_3k$ associated to the same rotation. Conversions ?

We have:

$$\mathcal{R} = 2 \times \begin{pmatrix} (q_0^2 + q_1^2) - \frac{1}{2} & q_1 q_2 - q_0 q_3 & q_1 q_3 + q_0 q_2 \\ q_1 q_2 + q_0 q_3 & (q_0^2 + q_2^2) - \frac{1}{2} & q_2 q_3 - q_0 q_1 \\ q_1 q_3 - q_0 q_2 & q_2 q_3 + q_0 q_1 & (q_0^2 + q_3^2) - \frac{1}{2} \end{pmatrix}.$$
 (1)

(if not unit quaternion, divide by $q_0^2 + q_1^2 + q_2^2 + q_3^2$)

Quaternion to matrix: naive implementation of (1)

- Applying (1) naively can lead to large componentwise relative error. Example: $q_0 = 1/2 - u$, $q_1 = 1/2 + u$, $\hat{r}_{11} = \text{RN}(2 \cdot \text{RN}(\text{RN}(q_0^2) + \text{RN}(q_1^2)) - 1)$ gives $\hat{r}_{11} = 0$ whereas $r_{11} = 4u^2$;
- In practice, the normwise relative error is small: we wish to show that;
- choice of matrix norm:

$$\|\mathcal{R}\|_{\infty} = \max_{i,j} |\mathcal{R}_{ij}|$$

• before we start, an almost ethical problem: really, what is the input?

After all, what is a unit quaternion?

• "official" answer:

$$q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1 \tag{2}$$

• Property (2) may be heavily used:

- by the algorithm: e.g., we compute r_{22} as $2(q_0^2 + q_1^2) 1$ instead of $1 - 2(q_1^2 + q_3^2)$ to have the same common term $2q_0^2 - 1$ everywhere in the diagonal;
- to compute error bounds: take as example the computation of $q_0^2 + q_1^2$,
 - computation of the squares: at least one of q_0^2 and q_1^2 is $\leq 1/2$, so error $\leq u/4$ for this one, and $\leq u/2$ for the other one;
 - summing the squares: result $\leq 1 \rightarrow \text{error} \leq u/2$ for the addition;
 - total error $\le u/4 + u/2 + u/2 = 5u/4$.
- for nontrivial cases, Property (2) is never satisfied!

Remark 1

The only unit quaternions whose components are floating-point numbers are ± 1 , $\pm i$, $\pm j$, $\pm k$ and the numbers $\pm \frac{1}{2} \pm \frac{1}{2} \cdot i \pm \frac{1}{2} \cdot j \pm \frac{1}{2} \cdot k$.

Lemma 1

A sum of 3 squares of integers modulo 8 never equals 7.

Proof of the Lemma: one can invoke Legendre's 3 squares theorem: *n* can be written $x^2 + y^2 + z^2$ iff it is not of the form $4^p(8q + 7)$.

But a simpler solution is to notice that $x^2 \mod 8 \in \{0, 1, 4\}$, and three such numbers cannot add up to 7.

proof of the remark:

•
$$q_0 + q_1i + q_2j + q_3k$$
, with

- $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$
- the q_is exact in finite-precision binary arithmetic.
- Let t be the smallest integer such that all $q'_i s$ are multiple of 2^{-t} .
- We assume t ≥ 2 (the cases 0 and 1 are processed exhaustively and lead to the cases given in the remark).
- define

$$Q_i = 2^t q_i \in \mathbb{Z},$$

we have

$$Q_0^2 + Q_1^2 + Q_2^2 + Q_3^2 = 2^{2t}.$$

• $t \text{ smallest} \rightarrow \text{ at least one of the } Q_i \text{s is odd. Without l.o.g.,}$ assume it is Q_0 . • so far, we have

$$Q_0^2 + Q_1^2 + Q_2^2 + Q_3^2 = 2^{2t}.$$

with Q_0 odd.

- $Q_0^2 = 1 \mod 8$
- $t \ge 2 \rightarrow 2^{2t}$ multiple of 8.
- hence, we need $Q_1^2 + Q_2^2 + Q_3^2 = 7 \mod 8$, which is impossible from the lemma.

• Reminder: we want to implement

$$\mathcal{R} = 2 \times \begin{pmatrix} (q_0^2 + q_1^2) - \frac{1}{2} & q_1 q_2 - q_0 q_3 & q_1 q_3 + q_0 q_2 \\ q_1 q_2 + q_0 q_3 & (q_0^2 + q_2^2) - \frac{1}{2} & q_2 q_3 - q_0 q_1 \\ q_1 q_3 - q_0 q_2 & q_2 q_3 + q_0 q_1 & (q_0^2 + q_3^2) - \frac{1}{2} \end{pmatrix}.$$
 (1)

• assume $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$? It (almost) never happens;

- assume we implement transformation (1) for any input quaternion? But the transformation is meaningless for "general" quaternions, and we will get over-pessimistic results.
- \rightarrow assume $q_0^2+q_1^2+q_2^2+q_3^2=1+\epsilon$ for $|\epsilon|$ less than some "reasonable" bound?

Assuming $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$

- absolute error on each component $\leq 3u$;
- ightarrow if $\hat{\mathcal{R}}$ is the computed value of \mathcal{R} ,

$$\frac{\|\hat{\mathcal{R}} - \mathcal{R}\|_{\infty}}{\|\mathcal{R}\|_{\infty}} \leq \frac{3u}{\|\mathcal{R}\|_{\infty}}.$$

- \mathcal{R} is a rotation matrix \rightarrow it is orthogonal: the sum of the squares of the elements of any column in \mathcal{R} is 1
- $\rightarrow\,$ at least one element has absolute value $\geq 1/\sqrt{3};$
- $\label{eq:relation} \begin{array}{l} \rightarrow \ \|\mathcal{R}\|_\infty \geq \sqrt{3}/3. \\ \mbox{(lower bound on the inf. norm of a rotation matrix?)} \end{array}$
 - Therefore, the normwise relative error is bounded by

 $3\sqrt{3}u \leq 5.197u.$

- $\hat{\mathcal{R}}$ computed value;
- \mathcal{R} exact matrix associated to the unternion q (i.e., exact formula (1) and division by $q_0^2 + q_1^2 + q_2^2 + q_3^2$);
- \mathcal{R}^* exact formula (1).

$$\begin{split} \|\hat{\mathcal{R}} - \mathcal{R}\|_{\infty} &\leq \|\hat{\mathcal{R}} - \mathcal{R}^*\|_{\infty} + \|\mathcal{R}^* - \mathcal{R}\|_{\infty} \\ &\leq 3u \times 2 + |\epsilon| \cdot \|\mathcal{R}\|_{\infty} \\ &\leq (6\sqrt{3}u + |\epsilon|) \cdot \|\mathcal{R}\|_{\infty}. \end{split}$$

- significantly more difficult;
- several solutions suggested. Good reference:

S. Sarabandi and F. Thomas, A Survey on the Computation of Quaternions From Rotation Matrices. Journal of Mechanisms and Robotics, 11(2), 03 2019.

- We analyse one possible solution, employed in the Patrius Library of CNES;
- same problem as previously: what is a floating-point rotation matrix?

In general, there's nothing such as the exact solution.

Rotation matrix \rightarrow quaternion conversion

• remember: the rotation matrix is

$$\mathcal{R} = 2 \times \begin{pmatrix} (q_0^2 + q_1^2) - \frac{1}{2} & q_1q_2 - q_0q_3 & q_1q_3 + q_0q_2 \\ q_1q_2 + q_0q_3 & (q_0^2 + q_2^2) - \frac{1}{2} & q_2q_3 - q_0q_1 \\ q_1q_3 - q_0q_2 & q_2q_3 + q_0q_1 & (q_0^2 + q_3^2) - \frac{1}{2} \end{pmatrix}.$$
 (1)

• First, (1) implies

$$\begin{aligned} |q_0| &= \frac{1}{2}\sqrt{1+r_{11}+r_{22}+r_{33}}, \\ |q_1| &= \frac{1}{2}\sqrt{1+r_{11}-r_{22}-r_{33}}, \\ |q_2| &= \frac{1}{2}\sqrt{1-r_{11}+r_{22}-r_{33}}, \\ |q_3| &= \frac{1}{2}\sqrt{1-r_{11}-r_{22}+r_{33}}. \end{aligned}$$
(3)

- We choose $q_0 > 0$. To be consistent q_1 has the sign of $r_{32} r_{23}$, q_2 has the sign of $r_{13} r_{31}$, and q_3 has the sign of $r_{21} r_{12}$;
- Straightforward use of (3) → possible large inaccuracies if one of the terms ±r₁₁ ± r₂₂ ± r₃₃ is close to −1.

Rotation matrix \rightarrow quaternion conversion

Remember:

$$\begin{array}{rcl} q_{0}| & = & \frac{1}{2}\sqrt{1+r_{11}+r_{22}+r_{33}}, \\ q_{1}| & = & \frac{1}{2}\sqrt{1+r_{11}-r_{22}-r_{33}}, \\ q_{2}| & = & \frac{1}{2}\sqrt{1-r_{11}+r_{22}-r_{33}}, \\ q_{3}| & = & \frac{1}{2}\sqrt{1-r_{11}-r_{22}+r_{33}}. \end{array}$$
(3)

- norm of the "exact" quaternion 1 → at least one of its components has absolute value ≥ 1/2;
- For that component, the corresponding value of

 $\pm r_{11} \pm r_{22} \pm r_{33}$ in (3) is ≥ 0 .

 $\rightarrow\,$ compute that component using (3), and then deduce the other components using:

$$\begin{aligned}
4q_2q_3 &= r_{23} + r_{32}, \\
4q_1q_3 &= r_{31} + r_{13}, \\
4q_1q_2 &= r_{21} + r_{12}, \\
4q_0q_1 &= r_{32} - r_{23}, \\
4q_0q_2 &= r_{13} - r_{31}, \\
4q_0q_3 &= r_{21} - r_{12}.
\end{aligned}$$
(4)

Rotation matrix \rightarrow quaternion conversion

- start by successively computing the terms $\pm r_{11} \pm r_{22} \pm r_{33}$ that appear in Eq. (3) as $RN(\pm r_{11} \pm RN(r_{22} \pm r_{33}))$;
- As soon as we have found a term strictly $>\eta$:
 - obtain the component corresponding to that term using (3);
 - deduce the other terms using (4).
- threshold η :
 - selected based on statistical trials (Sarabandi 2019);
 - CNES Patrius Library: $\eta = -0.19$;
 - our analysis: $\eta = -2^{-e}$, for $e \in \mathbb{N}$, 0 < e < p.

Theorem 2

When $\eta = -1/8$ and as soon as $p \ge 7$, the componentwise relative error of computing the quaternion coefficients from the rotation matrix coefficients using the method presented here is bounded by $\frac{41}{7}u + 40u^2$.

- there are the Octonions (Graves/Cayley) if you are ready to live with a non-associative ×;
- and that's it (Hurwitz theorem): the only values of *n* for which there exists an identity

$$(x_1^2 + x_2^2 + \dots + x_n^2)(y_1^2 + y_2^2 + \dots + y_n^2) = (z_1^2 + z_2^2 + \dots + z_n^2)$$

where z_i is bilinear (linear both in x and y) are 1, 2, 4, and 8.