Algorithms for Manipulating Quaternions
in Floating-Point Arithmetic

Mioara Joldes Jean-Michel Muller

Nuscap kick-off meeting — April 2021

William Rowan Hamilton (1805-1865)

@ around 1835, became fascinated by the
links between C and 2D geometry;

o first tried to build “a 3D generalization of
C"...but cannot work with distributive
and associative x:

e add a new “number” j ¢ C and assume
{a+ib+ jc|(a,b,c) € R?} is closed
under 4+ and x;:

e ji must be of the form a + ib + jc;

e but this gives

@ impossible even in a more general
context (Frobenius 1877).

And on the 16th october of 1843. ..

@ when walking to a meeting of
the royal Irish academy in
Dublin, found the solution;

@ hooligan-style, carved the
equations into the stone of
Brougham Bridge:

i? =% =k®=jjk=—1.

Quaternions

@ noncommutative field H: “numbers” of the form
g =dqo+ qii + q2j + g3k, with
® qo, G1, g2, g3 € R, “components” of g;
e /, j and k follow the (noncommutative) multiplication rules:

[xla] [J] k]
1] i j] «
i [il=1] «| —=j

P Til=k]=1] i
k[k] j1=i]-1

e scalar (or real) part go, vector part g1i + goj + gsk.

@ very trendy for a while;

@ rebirth in 2nd half of 20th century, with
applications in computer graphics, robotics,

aerospace. ..

e TombRaider (1993) smooth 3D rotations.

Not so surprising. ..

ni n2 ns
R=\| rm1i r2 mn3

1 32 133

.. Represented by 9 numbers?

A 3-D object. ..

Two interesting references

JOHN H. CONWAY
DEREK A. SMITH

QUATERN@NS

THER
GEOMETRY,
ARITHMETIC,
AND SYMMETRY

Operations on quaternions

@ scalar multiplication/division by a real number J;

@ addition of g = qo + g1/ + g2j + g3k and
r=ry+ni+ nrnj+ nk:

g+r=(q+n)+(qa+n)it(g+nr) jt+(g+n)-j,

e multiplication of g and r: q-r = mg + w1/ + ™) + w3k, with

T = qofo —dqgin — q2r2 — q3rs,
T = qorf + qiro+ q2r3 — g3ry,
T2 = qor2 — qir3+ q2ro + q3ri,
T3 = qor3+ qir2 —q2r + g3n.

Operations on quaternions

@ absolute value of g = qo + g1/ + g2j + g3k:

gl =/ + @@+ G + .
e satisfies |g x ¢'| = |g| - |¢/| (in fact, x built for that).
@ conjugate of g = qo + q1i + q2j + g3k:
9 =qo—q1i — q2j — g3k.
It satisfies qg = |q|%.
— reciprocal of g: 7
|q|?
@ X is not commutative — no unambiguous notion of division
— avoid notation g/r (unless g € R), since unclear if it is

g-riorrt.g.

Quaternions viewed as R x R3

qo + 0/ 4+ 0j + 0k identified with real number qp;

04 g1/ + qoj + g3k identified with vector (g1, g2, g3) of R3;

we write g = qo + v, with v = iq1 + jka + kg3 = (g1, 92, g3);

@ g unit quaternion: |g| = 1. Gives g = cosf + u - sin 6, with
u = m,
@ If g is a quaternion, what is the function of vectors

w—w =qgwg ! (weRd

o R® — R3 (one checks that real part of result is 0)

e linear

o |qwg | = 1 =

lq| - [w| - |q |w| — isometry

Quaternions and 3D rotations

® g =|q|-(cos@ + u-sinf), rotation of angle 26 and axis u;

1 — G so that

e if g is a unit quaternion then g~
w = qwq.

@ g and —q represent the same rotation;

@ combination of rotations <+ quaternion product:

g < rotation Q
r <> rotation R

Performing O then R on w:
r(qwg) rt=(rq)w(q 'r) = (rq) w(rq)".
r- g <> rotation R o O.

10

Fortunately they don’t commute. ..

around y axis

around y axis around z axis

11

Parameters of the underlying FP arithmetic

@ underlying radix-2, precision-p FP arithmetic, extremal

exponents €min and €max;

@ correctly-rounded (to nearest) FP operations, rounding
function RN;

o largest finite FP number:
0O — 2emu\71 - 2el.mfp+1.

@ smallest positive nonzero number:

o = 2emin*P71.

@ smallest positive normal number 2¢min.

@ rounding unit u =277,

12

Computing error bounds

@ define v =u/(1+ u);
@ for any t between 2°min and €, we have
u
RN(t) —t| <v-|t|=—) - |t| <u-l|t]
RN o) < vl = (o) -l < el
o If § = 4o+ G1i + §oj + G3k approximates
qg=qo+ qii + g2j + g3k, then the componentwise relative

error is

A

dn — Qn
Gn
(if gn = Gn = 0 then |(§n — gn)/qn| is replaced by 0), and the

max
n=0,...,3

)

normwise relative error is
q—4q

q
(if g = § = 0 then the normwise error is 0).

)

13

We will use several norms

@ absolute value |q| = ||q]|2 = \/qg + 4%+ g3 + q3;

@ infinite norm

1qlloc = max{|qol, |q1|, g2, [g3[},

@ l-norm

llalls = |qo| + |g1| + |g2| + |gs]-

They satisfy:

lqllo < gl < 2-]Iqlloos
lallo < llglli < 4-lIqlloos
|q| < gl £ 2-]q].

14

They all have their interest

® |- | =|| - ||2 is the natural norm of quaternions, the one that
satisfies |a- b| = |a| - |b|;
@ || - |loo is the natural norm for overflow avoidance/detection;

@ || - ||1 is the fastest to compute, it is computed without risk of

spurious overflow/underflow;

@ on my laptop (Intel Core i5 under MacOS, compiled under
XCode):

time | - | time || - |0

~ 1.06

_— = - ~1.76
time || - |1 time || - []1

15

Scaling a quaternion

@ some libraries implement the naive formulas for x, |-| and g~ 1;

@ not a problem if input operands in a domain in which overflow
& underflow are impossible or harmless (e.g., we only
manipulate unit quaternions);

@ otherwise: risk of spurious underflow or overflow — NaNs,
infinities, or very inaccurate results.

To avoid spurious under/overflow: scaling techniques, quite similar
to the ones used in complex arithmetic.

16

Scaling a quaternion

@ g=qo+ qii + goj + g3k, where qo, g1, g2, and g3 are FP
numbers;
@ compute a (real) scaling factor F such that
e F is a power of 2 (— multiplication by F is errorless);
o ||g/F|ls is not far from, and below, 1 (typically, will be
between 1/16 and 1).
@ We can use two functions specified by the IEEE 754 Std:
e scaleB(x, k): returns x - 2K (where x is a FP number and k is
an integer). Called scalbn in the C language;
o logB(x): returns |log, |x|| (where x is a FP number).Called
logb in C;
o if slow, there are other solutions.

17

Scaling a quaternion

@ natural solution: scaling factor = power of 2 immediately
larger than max{|qo|, |91, |a2], |g3]}, i-e.,
Fuo(g) = 2lo8z Il 1

@ on many recent architectures, |qo| + |q1| + |g2| + |g3|
computed more quickly than ||g||cc — rather use

Fi(q) = ollogs llaflaf+1

@ The definition of F., implies that

1 — ‘QI‘
— S Mmax

2 7 i=1,....4 F(q)

18

Computing the absolute value of a quaternion

® g=qo+ qii + qoj + g3k, where qo, g1, g2, and g3 are FP
numbers

@ naive algorithm:

$ + RN(g?)

© 0o N o g s Db
Q
o
X
=2

19

Remarks on the naive absolute value algorithm

@ spurious overflow may occur: binary32 arithmetic, qo = 29°,
g1 = qgo = g3 = 0, gives |q| = 2% and N = +o0;

@ spurious underflow may occur, but is an issue only when all
|gi|s are small (otherwise underflowing terms < largest one).
Binary32 arithmetic, qo = (3/2) x 2= and
g1 =q2=q3 =0, gives |g| = qo ~ 3.97 x 10723, and
N = 11863283/2% ~ 3.74 x 10~%3;

e first, error analysis, assuming no under/overflow.

20

Analysis of the naive absolute value algorithm

1 So(—RN(qS) \V’I',S;(]_—V)Sé\;SSi(l—FV),
2

2: $1 = RN(qq) = Vi, 01(1 — v)2 < 6; < o3(1 + V)2,
3: S — RN(qg) . .
453<—RN(q§) =>U(1—V) §6§0(1+V).
5: do <~ RN($ + $1) = Vo(l-v)¥2 < V6 < o1+ v)*?
6: 01 RN(§2 +5A3) 5 A

_\5/2 _ = 5/2
7 & RN(do + 61) = N(1—v)*2 < N =RN(V35) < N(1+v)>/2
8: N« RNE\/E) Barring underflow or overflow, relative error
9: return N bounded by (1 + v)>/2 — 1, which is < (5/2)u.

21

Scaling the absolute value algorithm

e we divide qo, g1, g2 and g3 by F = F1(q) or F..(q) (whichever
is the fastest to compute);

4

new input values g, g1, g5 and g5;

i

no division: we compute ¢ = logB(|/g||;) + 1 or
logB(l|gl/) + 1, and

q, = scaleB(q,, —c).
We obtain

< max{|qo, a1, a2, g3} < 1.

|

@ We apply the naive algorithm to the scaled inputs, and muliply
the obtained result by F;
@ Spurious overflow can no longer happen, underflow is harmless;

@ Same error bound. -

Computing the product of two quaternions

Naive solution: direct translation of the multiplication formula

#o = RN(RN(RN(goro) @) — RN(RN(g2r2) + RN(gsrs)))
#1 = RN(RN(RN(gor) + RN(qlro) RN(RN(gzr3) — RN(qsr2)))
#a RN (RN (RN(gor2) — RN(qur3)) + RN(RN(gzr0) + RN(qsr1)))
F R RN(RN(RN(qm)+ RN(q1r2)) — RN(RN(qzrl)fRN(qg,ro)))
No underflow or overflow — |, — #,| < u-|m,| + (2u + v?) - M.
with

Mo = lqoro| + |ginr| + |ger2| + |q3rs]

My = |qor|+ |qiro| + |gers| + |qzre|

M, = |qor| + |qir3| + |g2ro| + |g3ri]

Ms = |qors| + |girz| + |g2ri| + |g3rol.

23

Computing the product of two quaternions

After some manipulation, gives:

|m — 7

ka

< /3302 + 7203 + 60v* + 24v5 + 416

— Normwise relative error bound v/33 - u + u? ~ 5.75u + u?.

Scaling: done as for the absolute value.

24

Multiplication using Ogita, Rump and QOishi’s’s dot product

2Sum(x, y).
s < RN(x + y) Fast2Mult(x, y).
x' < RN(s — y)
y' + RN(s — x') w < RN(xy)
dx + RN(x — x/ e < RN(xy — w)

dy < RN(y —y/
t < RN(6x + 0,
return (s,t)

return (w,e)

N~— '

25

Multiplication using Ogita, Rump and QOishi’s’s dot product

Computation of my:

[S

© 008 NI O OT B 0o NoF

(so, €0) < Fast2Mult(qo, ro)
(s1,€e1) < Fast2Mult(—q1, 1)
(s2, €2) + Fast2Mult(—ga, r2)
(53, e3) < Fast2Mult(—gs, r3)
g < €
S+ So
for i=1to 3 do

(S, p) < 2Sum(S, s))

o + RN(c + RN(p + €))
end for

: 7o < RN(S + o)
. return 7y

When no underflow or overflow oc-
curs, fg, @1, 72, and 73 satisfy

1 4u :
Th — /A_‘n <u TplT3x 'Mn-
| < uefmal 2 <l — 4u>

— much better bound than the naive

algorithm when M, /|m,| is large.
Normwise relative error bound:

3202,

U <F

26

Reciprocal computed as g/|q/?

@ componentwise and normwise relative errors < 4u + 502 4 2u3;

e scaling g by Fi(g) — no overflows, harmless underflow (for
the normwise error).

27

Example: CNES Patrius Library

Site internet en Travaux
ACCUEIL DYNAMIQUE DU VOL

IMAGE

LOS QUALITE TELECOM GNSS AUTRES

Accusil > PATRIUS
DYNAMIQUE DU VoL lll pATRIUS

Accueil
ipti Contact
Contact
News
Les Logi
CELESTLAB

PATRIUS est constitué de plusieurs librairies couvrant les différents domaines de la dynamique du vol.
Clest une librairie trés compléte contenant aussi bien des classes et méthodes basiques que du code de
beaucoup plus haut niveau. PATRIUS permet par exemple de réaliser facilement des calculs de
CELESTLABX propagation d'orbite, calculs de chronogramme, calculs de lois de guidage en attitude.

Les principaux domaines couverts sont les suivants
GENIUS
« Mathématiques : matrices, rotations, intégrateurs numériques,
« Définition d'orbites : dates, repéres, paraméires, conversions, .
GENOPUS o Manceuvres : impulsionnelles, continues, séquences
« Atitude & guidage : nombreux types de lois, séquences, ralliements.
(TS . Pmpagaﬂcn nombreux modéles de force, propagation numérique et modéles analytiques ou semi-
analytique:
MSLIB

S G ST R ST post-processing
o Caractéristiques satellte : 11C/, géométrie, caractéristiques aérodynamique,

File Quaternion.java

28

Conversion from/to rotation matrices

Rotation matrix Unit quaternion qo + q1/ + q2j + g3k

associated to the same rotation.

Conversions ?

ni rn2 ns
R=| rmn1 r2 rs3
31 r32 133

We have:

(6+3di)— % q1G2—Gogs G1Gs + Goq2
R=2x| qua2+qogs (96 +) —3 G203 — Goqs (D)
9193 — qod2 23+ qoq1 (96 +q5) — 3

(if not unit quaternion, divide by qg +q2+ g3 + q§)

29

Quaternion to matrix: naive implementation of (1)

@ Applying (1) naively can lead to large componentwise relative error.
Example: go = 1/2 — u, g1 = 1/2 + u, 11 = RN(2- RN(RN(g3) +
RN(q?)) — 1) gives /11 = 0 whereas ri1 = 4u?;

@ In practice, the normwise relative error is small: we wish to show
that;

@ choice of matrix norm:

[Relee = e

@ before we start, an almost ethical problem: really, what is the input?

30

After all, what is a unit quaternion?

o “official” answer:
Bt+a+apt+a=1 (2)

@ Property (2) may be heavily used:
e by the algorithm: e.g., we compute rx as 2(g3 + ¢2) — 1
instead of 1 — 2(g% + g3) to have the same common term
293 — 1 everywhere in the diagonal;
e to compute error bounds: take as example the computation of
% + ai.

@ computation of the squares: at least one of g3 and 7 is
<1/2, so error < u/4 for this one, and < u/2 for the other
one;

@ summing the squares: result < 1 — error < u/2 for the
addition;

o total error < u/4+ u/2+ u/2 = 5u/4.

@ for nontrivial cases, Property (2) is never satisfied!
31

After all, what is a unit quaternion?

Remark 1

The only unit quaternions whose components are floating-point
numbers are +1, +/, =/, -k and the numbers
+3E5-it5-jE5k

Lemma 1

A sum of 3 squares of integers modulo 8 never equals 7.

Proof of the Lemma: one can invoke Legendre's 3 squares
theorem: n can be written x> + y? + z2 iff it is not of the form
4P(8q + 7).

But a simpler solution is to notice that x> mod 8 € {0, 1,4}, and
three such numbers cannot add up to 7.

32

After all, what is a unit quaternion?

proof of the remark:
® qo+ g1/ + q2j + g3k, with
° g3 t+aitata=1
e the g;s exact in finite-precision binary arithmetic.
@ Let t be the smallest integer such that all g}s are multiple of
27t
@ We assume t > 2 (the cases 0 and 1 are processed
exhaustively and lead to the cases given in the remark).
@ define
Qi=2'gi € Z,
we have
QR+ Q7 + Q2 + @ =2
@ t smallest — at least one of the Q;s is odd. Without l.o.g.,
assume it is Qp. 33

After all, what is a unit quaternion?

@ so far, we have
Q§+QE*Q§+Q§—2%-

with Qp odd.
° g =1 mod8
o t > 2 — 2% multiple of 8.

@ hence, we need Q12 + 022 + Q% =7 mod 8, which is
impossible from the lemma.

34

Error of unit quaternion — rotation matrix conversion

@ Reminder: we want to implement

(B+0i)—32 @a—qogs quas + Goqe
R=2x| qua2+qogs (9% +¢5)—3 9203 — Goqs - ()
13 — QG2 @@+ qq (96 +43) — 3
e assume g3 + g7 + g3 + g3 = 17 It (almost) never happens;

@ assume we implement transformation (1) for any input
quaternion? But the transformation is meaningless for
“general” quaternions, and we will get over-pessimistic results.

— assume g3 + g3 + g3 + g3 = 1 + € for |e| less than some
“reasonable” bound?

35

Assuming 3 +qi +q5 +q5 =1

@ absolute error on each component < 3u;
— if R is the computed value of R,

Hﬁ’ - RHOO 3u
< .
R [o0 R loo

@ R is a rotation matrix — it is orthogonal: the sum of the

squares of the elements of any column in R is 1
— at least one element has absolute value > 1/\/§;

= IRl = V3/3.
(lower bound on the inf. norm of a rotation matrix?)

@ Therefore, the normwise relative error is bounded by

3v3u < 5.197u.

36

Assuming q3 +qi +q5 +q5 =1+¢

e 7R computed value;

@ R exact matrix associated to the uaternion g (i.e., exact
formula (1) and division by 3 + ¢? + g3 + 43);
@ R* exact formula (1).
IR = Rlloo < R = R loc + [IR* = Rl|os
< 3ux2+4+|e||IRlco
<

(6v3u +Jel) - IR]lco-

37

Rotation matrix — quaternion conversion

@ significantly more difficult;

@ several solutions suggested. Good reference:
S. Sarabandi and F. Thomas, A Survey on the Computation of
Quaternions From Rotation Matrices. Journal of Mechanisms
and Robotics, 11(2), 03 2019.

@ We analyse one possible solution, employed in the Patrius
Library of CNES;

@ same problem as previously: what is a floating-point rotation
matrix?

In general, there's nothing such as the exact solution.

38

Rotation matrix — quaternion conversion

@ remember: the rotation matrix is

(@ +3ai)—3 992 —qogs G193 + Goq2
R=2x| qua2+qogs (9% +¢5)—3 G203 — Goqs ()
g143 — qoQq2 G2G3 + qoq1 (96 +a3) — %

e First, (1) implies

lgo] = SVI+ra+ o+ s,
lgi] = 3VI+r1—ro— rs,
: (3)
lg2] = 3vV1—r1+r2—ns,
lgs] = 3VI—r1— ro+ s

@ We choose gg > 0. To be consistent g; has the sign of
3> — M3, go has the sign of ri3 — r31, and g3 has the sign of
r1 — ro;

@ Straightforward use of (3) — possible large inaccuracies if one

of the terms =£ri1 &= o + 33 is close to —1. i

Rotation matrix — quaternion conversion

Remember:
|qol V141 + 2+ s,
1] = %\/1 + rn1 — ro — rss, (3)
la2| = %\/1—f11+f22—r33>
lgs| = %\/1—r11—r22+f33-

@ norm of the “exact” quaternion 1 — at least one of its
components has absolute value > 1/2;
@ For that component, the corresponding value of
irll T .o + r33 in (3) is Z 0.
— compute that component using (3), and then deduce the other
components using:

49293 = 3+ r3z,
49193 = 31+ ns,
4q192 = 1+ no, (4)
4goq1 = 32— na3,
4goq2 = n3 — 31,

49093 = 21— no. i

Rotation matrix — quaternion conversion

@ start by successively computing the terms +ri1 & o & r33 that
appear in Eq. (3) as RN(£r11 = RN(r22 + 133));
@ As soon as we have found a term strictly > n:

e obtain the component corresponding to that term using (3);
o deduce the other terms using (4).
@ threshold n:

o selected based on statistical trials (Sarabandi 2019);
e CNES Patrius Library: n = —0.19;
e our analysis: n=—-27¢ foree N, 0 < e < p.

Theorem 2

When n = —1/8 and as soon as p > 7, the componentwise relative
error of computing the quaternion coefficients from the rotation
matrix coefficients using the method presented here is bounded by

%u + 4002,
41

And beyond quaternions?

@ there are the Octonions (Graves/Cayley) if you are ready to
live with a non-associative x:

@ and that's it (Hurwitz theorem): the only values of n for which
there exists an identity

CE+5+ +x) i +ys++yi)=(HZ+ZB+ - +2)

where z; is bilinear (linear both in x and y) are 1,2, 4, and 8.

42

