The Christoffel-Darboux kernel for Data Analysis

Jean B. Lasserre

LAAS-CNRS, Institute of Mathematics & ANITI, Toulouse, France

Journées NUuSCAP, Toulouse, 2022

Research funded by ANITI institute, under grant ANR-19-PIA3-0004 and ANR-NUuSCAP-20-CE48-0014
Joint work with

- Edouard Pauwels (IRIT & IMT, Toulouse)
- Mihai Putinar (UCSB, USA & University of Newcastle UK)
Jean B. Lasserre
semidefinite characterization
Consider the following cloud of 2D-points (data set) below

The red curve is the level set

\[S_\gamma := \{ \mathbf{x} : Q_d(\mathbf{x}) \leq \gamma \}, \quad \gamma \in \mathbb{R}_+ \]

of a certain polynomial \(Q_d \in \mathbb{R}[x_1, x_2] \) of degree 2d.

Notice that \(S_\gamma \) captures quite well the shape of the cloud.
Not a coincidence!

* Surprisingly, low degree \(d \) for \(Q_d \) is often enough to get a pretty good idea of the shape of \(\Omega \) (at least in dimension \(p = 2, 3 \))
Perform the following simple operations on a preferred cloud of 2D-points: So let $d = 2$, $p = 2$ and $s(d) = \binom{p+d}{p}$.

- Let $v_d(x)^T = (1, x_1, x_2, x_1^2, x_1x_2, \ldots, x_1 x_2^{d-1}, x_2^d)$. be the vector of all monomials $x_i^j x_j^k$ of total degree $i + j \leq d$
- Form the real symmetric matrix of size $s(d)$

$$M_d := \frac{1}{N} \sum_{i=1}^{N} v_d(x(i)) v_d(x(i))^T,$$

where the sum is over all points $(x(i))_{i=1, \ldots, N} \subset \mathbb{R}^2$ of the data set.
So the matrix $N \cdot M_d$ reads:

$$
\sum_i \begin{bmatrix}
1 & x_1(i) & x_2(i) & x_1(i)^2 & \cdots & x_2(i)^d \\
x_1(i) & x_1(i)^2 & x_1(i) x_2(i) & x_1(i)^3 & \cdots & x_1(i) x_2(i)^d \\
x_2(i) & x_1(i) x_2(i) & x_2(i)^2 & x_1(i)^2 x_2(i) & \cdots & x_2(i)^{d+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
x_2(i)^d & x_1(i) x_2(i)^d & x_2(i)^{d+1} & x_1(i)^2 x_2(i)^d & \cdots & x_2(i)^{2d}
\end{bmatrix}
$$
Note that typically, \(M_d \) is what is called the \textbf{MOMENT-matrix} of the \textit{empirical measure}

\[
\mu^N := \frac{1}{N} \sum_{i=1}^{N} \delta_{x(i)}
\]

associated with a sample of size \(N \), drawn according to an unknown measure \(\mu \).

The (usual) notation \(\delta_{x(i)} \) stands for the \textbf{DIRAC} measure supported at the point \(x(i) \) of \(\mathbb{R}^2 \).
Next, form the SOS polynomial:

\[x \mapsto Q_d(x) := v_d(x)^T M_d^{-1} v_d(x). \]

\[= \left(1, x_1, x_2, x_1^2, \ldots, x_2^d \right) M_d^{-1} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ \vdots \\ x_2^d \end{pmatrix} \]

Plot some level sets

\[S_\gamma := \{ x \in \mathbb{R}^2 : Q_d(x) = \gamma \} \]

for some values of \(\gamma \), the thick one representing the particular value \(\gamma = \binom{2+d}{2} \).
The Christoffel function $\Lambda_d : \mathbb{R}^p \rightarrow \mathbb{R}_+$ is the reciprocal

$$x \mapsto Q_d(x)^{-1}, \quad \forall x \in \mathbb{R}^p$$

of the SOS polynomial Q_d.

It has a rich history in Approximation theory and Orthogonal Polynomials.

Among main contributors: Nevai, Totik, Króo, Lubinsky, Simon, ...
The Christoffel function $\Lambda_d : \mathbb{R}^p \to \mathbb{R}_+$ is the reciprocal

$$x \mapsto Q_d(x)^{-1}, \quad \forall x \in \mathbb{R}^p$$

of the SOS polynomial Q_d.

It has a rich history in Approximation theory and Orthogonal Polynomials.

Among main contributors: Nevai, Totik, Króo, Lubinsky, Simon, ...

... The CF seems to be not so well-known in data analysis.
Let μ be a (positive) measure supported on a compact set $\Omega \subset \mathbb{R}^p$ with nonempty interior.

A family $(P_\alpha)_{\alpha \in \mathbb{N}^p} \subset \mathbb{R}[x]$ is orthonormal w.r.t. μ if

$$
\int_{\Omega} P_\alpha(x) P_\beta(x) \mu(dx) = \delta_{\alpha=\beta}, \quad \forall \alpha, \beta \in \mathbb{N}^p.
$$

Here $\delta_{\alpha=\beta}$ is the standard Kronecker symbol.
Let $\mathbb{N}_t^p := \{ \alpha \in \mathbb{N}^p : \sum_j \alpha_j \leq t \}$ and suppose that all moments

$$\mu_\alpha := \int_\Omega x^\alpha \, d\mu, \quad \forall \alpha \in \mathbb{N}_t^p,$$

are available.

Then one may construct an orthonormal family $(P_\alpha)_{\alpha \in \mathbb{N}_t^p}$ from determinants of moment matrices associated with μ.
The moment matrix $M_d(\mu)$ is the real symmetric matrix with rows and columns indexed by $(x^\alpha)_{\alpha \in \mathbb{N}_d^p}$, and with entries

$$M_d(\mu)(\alpha, \beta) := \int_{\Omega} x^{\alpha+\beta} d\mu = \mu_{\alpha+\beta}, \quad \forall \alpha, \beta \in \mathbb{N}_d^p.$$

Illustrative example in dimension 2:

$$M_1(\mu) := \begin{pmatrix} 1 & X_1 & X_2 \\ 1 & \mu_{00} & \mu_{10} & \mu_{01} \\ X_1 & \mu_{10} & \mu_{20} & \mu_{11} \\ X_2 & \mu_{01} & \mu_{11} & \mu_{02} \end{pmatrix}$$

is the moment matrix of μ of "degree $d=1". \)
One way to construct polynomials orthonormal w.r.t. \(\mu \)

Fix an ordering of \(\mathbb{N}^p \) (e.g. lexicographic ordering)

\[
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), \ldots
\]

Then \(P_{00}(x) = 1 \) for all \(x = (x_1, x_2) \in \mathbb{R}^2 \).

\[
Q_{10}(x) := \det \begin{pmatrix} \mu_{00} & \mu_{10} \\ 1 & X_1 \end{pmatrix} = X_1 - \mu_{10}.
\]

\[
Q_{01}(x) := \det \begin{pmatrix} \mu_{00} & \mu_{10} & \mu_{01} \\ \mu_{10} & \mu_{20} & \mu_{11} \\ 1 & X_1 & X_2 \end{pmatrix}
\]

\[= \mu_{10}\mu_{11} - \mu_{01}\mu_{20} - X_1 (\mu_{00}\mu_{11} - \mu_{10}\mu_{01}) + X_2 (\mu_{00}\mu_{20} - \mu_{10}^2)\]

Then normalize, i.e. \(P_{10} = \theta Q_{10} \) with \(\theta \) such that

\[
\theta^2 \int_{\Omega} Q_{10}^2 \, d\mu = 1.
\]

and similarly with \(P_{01} = \theta Q_{01} \).
One way to construct polynomials orthonormal w.r.t. μ

Fix an ordering of \mathbb{N}^p (e.g. lexicographic ordering)

$$
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), \ldots
$$

Then $P_{00}(x) = 1$ for all $x = (x_1, x_2) \in \mathbb{R}^2$.

$$Q_{10}(x) := \det \begin{pmatrix} \mu_{00} & \mu_{10} \\ 1 & X_1 \end{pmatrix} = X_1 - \mu_{10}.$$

$$Q_{01}(x) := \det \begin{pmatrix} \mu_{00} & \mu_{10} & \mu_{01} \\ \mu_{10} & \mu_{20} & \mu_{11} \\ 1 & X_1 & X_2 \end{pmatrix}
= \mu_{10}\mu_{11} - \mu_{01}\mu_{20} - X_1 (\mu_{00}\mu_{11} - \mu_{10}\mu_{01}) + X_2 (\mu_{00}\mu_{20} - \mu_{10}^2)$$

Then normalize, i.e. $P_{10} = \theta Q_{10}$ with θ such that

$$\theta^2 \int_{\Omega} Q_{10}^2 \, d\mu = 1.$$

and similarly with $P_{01} = \theta Q_{01}$.

Jean B. Lasserre
semidefinite characterization
Similarly,

\[Q_{20}(x) := \det \begin{pmatrix} \mu_{00} & \mu_{10} & \mu_{01} & \mu_{20} \\ \mu_{10} & \mu_{20} & \mu_{11} & \mu_{30} \\ \mu_{01} & \mu_{11} & \mu_{02} & \mu_{21} \\ 1 & X_1 & X_2 & X_1^2 \end{pmatrix} \]

\[= X_1^2 \det \begin{pmatrix} \mu_{00} & \mu_{10} & \mu_{01} \\ \mu_{10} & \mu_{20} & \mu_{11} \\ \mu_{01} & \mu_{11} & \mu_{02} \end{pmatrix} - X_2 (\cdots) + X_1 (\cdots) - (\cdots). \]

and \(P_{20} = \theta Q_{20} \) with \(\theta \) such that

\[\theta^2 \int_\Omega Q_{20}^2 \, d\mu = 1. \]
The vector space $\mathbb{R}[x]_d$ viewed as a subspace of $L^2(\mu)$ is a Reproducing Kernel Hilbert Space (RKHS).

Its reproducing kernel

$$(x, y) \mapsto K^\mu_d(x, y) := \sum_{|\alpha| \leq d} P_\alpha(x) P_\alpha(y), \quad \forall x, y \in \mathbb{R}^p,$$

is called the Christoffel-Darboux kernel.
The reproducing property

\[x \mapsto q(x) = \int_{\Omega} K_d^{\mu}(x, y) q(y) \, d\mu(y), \quad \forall q \in \mathbb{R}[x]_d. \]

useful to determinate the best degree-\(d\) \(L^2(\mu)\)-polynomial approximation

\[
\inf_{q \in \mathbb{R}[x]_d} \| f - q \|_{L^2(\mu)}
\]

of \(f \in L^2(\mu)\). Indeed:

\[
\tilde{f}_d(x) := \sum_{\alpha \in \mathbb{N}^d_+} \left(\int_{\Omega} f(y) P_\alpha(y) \, d\mu \right) P_\alpha(x) \in \mathbb{R}[x]_d
\]

\[
= \arg \min_{q \in \mathbb{R}[x]_d} \| f - q \|_{L^2(\mu)}
\]
and

\[
\int_{\Omega} (f - \hat{f}_d)^2 \, d\mu \to 0 \quad \text{as} \quad d \to \infty
\]

or, equivalently:

\[
\lim_{d \to \infty} \| f - \hat{f}_d \|_{L^2(\mu)} = 0.
\]
Recall that the support Ω of μ is compact with nonempty interior, and let $(P_\alpha)_{\alpha \in \mathbb{N}^p}$ be a family of orthonormal polynomials w.r.t. μ.

Theorem

The Christoffel function $\Lambda^\mu_d : \mathbb{R}^p \to \mathbb{R}^+$ is defined by:

$$\xi \mapsto \Lambda^\mu_d(\xi)^{-1} = \sum_{|\alpha| \leq d} P_\alpha(\xi)^2 = K^\mu_d(\xi, \xi), \quad \forall \xi \in \mathbb{R}^p,$$

and it also satisfies the variational property:

$$\Lambda^\mu_d(\xi) = \min_{P \in \mathbb{R}[x]_d} \left\{ \int_\Omega P^2 \, d\mu : P(\xi) = 1 \right\}, \quad \forall \xi \in \mathbb{R}^p.$$

Alternatively

$$\Lambda^\mu_d(\xi)^{-1} = \mathbf{v}_d(\xi)^T M_d(\mu)^{-1} \mathbf{v}_d(\xi), \quad \forall \xi \in \mathbb{R}^p.$$
Recall that the support Ω of μ is compact with nonempty interior, and let $(P_\alpha)_{\alpha \in \mathbb{N}^p}$ be a family of orthonormal polynomials w.r.t. μ.

Theorem

The Christoffel function $\Lambda^\mu_d : \mathbb{R}^p \rightarrow \mathbb{R}^+$ is defined by:

$$
\xi \mapsto \Lambda^\mu_d(\xi)^{-1} = \sum_{|\alpha| \leq d} P_\alpha(\xi)^2 = K^\mu_d(\xi, \xi), \quad \forall \xi \in \mathbb{R}^p,
$$

and it also satisfies the variational property:

$$
\Lambda^\mu_d(\xi) = \min_{P \in \mathbb{R}[x]_d} \left\{ \int_{\Omega} P^2 \, d\mu : P(\xi) = 1 \right\}, \quad \forall \xi \in \mathbb{R}^p.
$$

Alternatively

$$
\Lambda^\mu_d(\xi)^{-1} = v_d(\xi)^T M_d(\mu)^{-1} v_d(\xi), \quad \forall \xi \in \mathbb{R}^p.
$$
Importantly, and crucial for applications, the Christoffel function identifies the support Ω of the underlying measure μ.

Theorem

Let the support Ω of μ be compact with nonempty interior. Then:

- For all $x \in \text{int}(\Omega)$: $K_d^\mu(x, x) = O(d^p)$.
- For all $x \in \text{int}(\mathbb{R}^p \setminus \Omega)$: $K_d^\mu(x, x) = \Omega(\exp(\alpha d))$ for some $\alpha > 0$.

In particular, as $d \to \infty$,

$$d^p \Lambda_d^\mu(x) \to 0 \text{ very fast whenever } x \notin \Omega.$$
Growth rates for $K_d^{\mu}(x, x) = \Lambda_d^{\mu}(x)^{-1}$.

\[\frac{d^p \exp(\alpha d)}{d^p + 1} \exp(\alpha \sqrt{d}) \]
Some other properties

- Under some (restrictive) assumption on \(\Omega \) and \(\mu \)

\[
\lim_{d \to \infty} s(d) \Lambda_d^\mu(\xi) = f_\mu(\xi) \omega(\xi)^{-1}
\]

where \(\omega \) is the density of an equilibrium measure intrinsically associated with \(\Omega \).
For instance with \(p = 1 \) and \(\Omega = [-1, 1] \), \(\omega(\xi) = \sqrt{1 - \xi^2} \).

- If \(\mu \) and \(\nu \) have same support \(\Omega \) and respective densities \(f_\mu \) and \(f_\nu \) w.r.t. Lebesgue measure on \(\Omega \), positive on \(\Omega \), then:

\[
\lim_{d \to \infty} \frac{\Lambda_d^\mu(\xi)}{\Lambda_d^\nu(\xi)} = \frac{f_\mu(\xi)}{f_\nu(\xi)} , \quad \forall \xi \in \Omega .
\]

useful for density approximation
Some other properties

Under some (restrictive) assumption on Ω and μ

$$\lim_{d \to \infty} s(d) \Lambda_d^\mu(\xi) = f_\mu(\xi) \omega(\xi)^{-1}$$

where ω is the density of an equilibrium measure intrinsically associated with Ω.
For instance with $p = 1$ and $\Omega = [-1, 1]$, $\omega(\xi) = \sqrt{1 - \xi^2}$.

If μ and ν have same support Ω and respective densities f_μ and f_ν w.r.t. Lebesgue measure on Ω, positive on Ω, then:

$$\lim_{d \to \infty} \frac{\Lambda_d^\mu(\xi)}{\Lambda_d^\nu(\xi)} = \frac{f_\mu(\xi)}{f_\nu(\xi)}, \quad \forall \xi \in \Omega.$$

useful for density approximation
If Ω is not full-dimensional and is supported on a real variety $V \subset \mathbb{R}^p$, then for sufficiently large degree d:

$$d \mapsto \text{rank}(M_d) = q(d)$$

where $q \in \mathbb{R}[t]$ is the Hilbert polynomial associated with V and whose degree provides the dimension of V.

So one may use the rank of the moment matrix M_d to identify the dimension of the underlying variety.

useful for manifold learning.
The Christoffel function can be used in several important applications of Machine Learning (e.g. outlier detection, density approximation, manifold learning). In this case the measure μ is the empirical probability measure μ^N associated with a cloud of N points $C \subset \mathbb{R}^p$ (the data of interest).

Computing $\Lambda^{\mu_N}_d$ requires only one pass over the data & no optimization.
The Christoffel function can be used in several important applications of Machine Learning (e.g. outlier detection, density approximation, manifold learning). In this case the measure μ is the empirical probability measure μ^N associated with a cloud of N points $C \subset \mathbb{R}^p$ (the data of interest).

Computing Λ_μ^N requires only one pass over the data & no optimization.
The Christoffel function can be used in several important applications of Machine Learning (e.g. outlier detection, density approximation, manifold learning). In this case the measure μ is the empirical probability measure μ^N associated with a cloud of N points $C \subset \mathbb{R}^p$ (the data of interest).

Computing $\Lambda_{d}^{\mu^N}$ requires only one pass over the data & no optimization.
Rank-one update

Updating the Christoffel function when the cloud of \(N \) points one additional point \(\xi \) is added to the cloud of \(N \) points is easy.

\[
(N + 1) \mu^{N+1} = \sum_{i=1}^{N} \delta_{\mathbf{x}(i)} + \delta_{\xi} = N \mu^N + \delta_{\xi}
\]

By Sherman-Morrison’s rank-one update formula

\[
((N + 1) M_d(\mu^{N+1}))^{-1} = (N M_d(\mu^N) + v_d(\xi)v_d(\xi)^T)^{-1}
\]

\[
= (N M_d(\mu^N))^{-1} - \frac{1}{N^2} \frac{M_d(\mu^N)^{-1}v_d(\xi)v_d(\xi)^T M_d(\mu^N)^{-1}}{1 + v_d(\xi)M_d(\mu^N)^{-1}v_d(\xi)}
\]
and therefore

one obtains the simple update formula:

\[
\frac{1}{N+1} \Lambda^{\mu^N+1}_d (x) = \frac{1}{N} \left[\Lambda^{\mu^N}_d (x) - \frac{K^{\mu^N}_d (x, \xi)^2}{N(1 + \Lambda^{\mu^N}_d (x))} \right], \quad \forall x
\]

\[
\frac{1}{N+1} \Lambda^{\mu^N+1}_d (\xi) = \frac{1}{N} \Lambda^{\mu^N}_d (\xi) - \frac{1}{N^2} \frac{\Lambda^{\mu^N}_d (\xi)^2}{1 + \Lambda^{\mu^N}_d (\xi)}
\]
For instance one may decide to classify as outliers all points ξ such that $\Lambda_d^{\mu_N}(\xi) < \left(\frac{p+d}{p}\right)^{-1}$.

Such a strategy (even with relatively low degree d) is as efficient as more elaborated techniques, with only one parameter (the degree d), and with no optimization involved.

For instance one may decide to classify as outliers all points ξ such that $\Lambda_{\mu}^N(\xi) < \left(\frac{p+d}{p}\right)^{-1}$.

Such a strategy (even with relatively low degree d) is as efficient as more elaborated techniques, with only one parameter (the degree d), and with no optimization involved.

For instance one may decide to classify as outliers all points ξ such that $\Lambda_d^{\mu N} (\xi) < \left(\frac{p+d}{p} \right)^{-1}$.

Such a strategy (even with relatively low degree d) is as efficient as more elaborated techniques, with only one parameter (the degree d), and with no optimization involved.

Promising results in a recent collaboration with:

1- S. Dauzère-Péres, V. Borodin (EMSE) and the STMicroelectronics company for data analysis of processing times for operations in a job-shop (e.g. detection of anomalies, density estimation, etc.)

2- L. Travé, K. Ducharlet (LAAS-CNRS) and the Carl Berger-Levrault company for detection of anomalies in data analysis of wireless sensors network used in several applications (e.g. units of air treatment, automatic bagage conveyor in airports (data in form of temporal series),

Promising results in a recent collaboration with:

1- S. Dauzère-Péres, V. Borodin (EMSE) and the STMicroelectronics company for data analysis of processing times for operations in a job-shop (e.g. detection of anomalies, density estimation, etc.)

2- L. Travé, K. Ducharlet (LAAS-CNRS) and the Carl Berger-Levrault company for detection of anomalies in data analysis of wireless sensors network used in several applications (e.g. units of air treatment, automatic bagage conveyor in airports (data in form of temporal series), K. Ducharlet, L. Travé, J.B. Lasserre, M.V. Le Lann, Y. Miloudi. Leveraging the Christoffel Function for Outlier Detection in Data Streams, submitted.
A measure μ on compact set Ω is completely determined by its moments and therefore it should not be a surprise that its moment matrix $M_d(\mu)$ contains a lot of information.

We have already seen that its inverse $M_d(\mu)^{-1}$ defines the Christoffel function.

When μ is degenerate and its support Ω is contained in a real algebraic variety then the kernel of $M_d(\mu)$ identifies the generators of a corresponding ideal of $\mathbb{R}[x]$.

Jean B. Lasserre
For instance let $\Omega \subset S^{p-1}$ (the Euclidean unit sphere of \mathbb{R}^p)
Then the kernel of $\mathbf{M}_d(\mu)$ contains vectors of coefficients of polynomials in the ideal generated by the quadratic polynomial $x \mapsto g(x) := 1 - \|x\|^2$.

In fact and remarkably,

$$\text{rank } \mathbf{M}_d(\mu) = p(d)$$

for some univariate polynomial p (the Hilbert polynomial associated with the algebraic variety) which is of degree t if t is the dimension of the variety.

For instance $t = p - 1$ if the support is contained in the sphere S^{p-1} of \mathbb{R}^p.
For $\varepsilon > 0$ sufficiently small, the Christoffel function

$$ x \mapsto \Lambda_\mu^d(x) = v_d(x) \left(M_d(\mu) + \varepsilon I \right)^{-1} v_d(x) $$

and its empirical version (from a sample of data points on Ω)

$$ x \mapsto \Lambda_\mu^N(x) = v_d(x) \left(M_d(\mu^N) + \varepsilon I \right)^{-1} v_d(x) $$

identifies correctly the support of Ω.

Again this illustrates how quite sophisticated concepts of algebraic geometry are hidden and \textit{encapsulated} in the \textbf{moment matrix} $M_d(\mu)$.

They can be exploited to extract \textit{various useful information} on the data set.

In addition, \textit{extraction} of this information can be done via quite simple \textit{linear algebra techniques}.
Again this illustrates how quite sophisticated concepts of algebraic geometry are hidden and encapsulated in the moment matrix $M_d(\mu)$.

They can be exploited to extract various useful information on the data set.

In addition, extraction of this information can be done via quite simple linear algebra techniques.
Again this illustrates how quite sophisticated concepts of algebraic geometry are hidden and encapsulated in the moment matrix $M_d(\mu)$. They can be exploited to extract various useful information on the data set. In addition, extraction of this information can be done via quite simple linear algebra techniques.
However

for non modest dimension of data, matrix inversion of M_d^{-1} does not scale well ...

On the other hand

for evaluation $\Lambda_d^{\mu}(\xi)$ at a point $\xi \in \mathbb{R}^p$, the variational formulation

$$\Lambda_d^{\mu}(\xi) = \min_{P \in \mathbb{R}[x]_d} \left\{ \int_{\Omega} P^2 \, d\mu : P(\xi) = 1 \right\}, \quad \forall \xi \in \mathbb{R}^p.$$

is the simple quadratic programming problem.

$$\min_{p \in \mathbb{R}^{s(d)}} \left\{ p^T M_d p : v_d(\xi)^T p = 1 \right\},$$

which can be solved quite efficiently.
However

for non modest dimension of data, matrix inversion of M_d^{-1} does not scale well ...

On the other hand

for evaluation $\Lambda_{d}^{\mu}(\xi)$ at a point $\xi \in \mathbb{R}^p$, the variational formulation

$$\Lambda_{d}^{\mu}(\xi) = \min_{P \in \mathbb{R}[x]_d} \{ \int_{\Omega} P^2 \, d\mu : P(\xi) = 1 \}, \quad \forall \xi \in \mathbb{R}^p.$$

is the simple quadratic programming problem.

$$\min_{p \in \mathbb{R}^{s(d)}} \{ p^T M_d p : v_d(\xi)^T p = 1 \},$$

which can be solved quite efficiently.
Other non-polynomial kernels, some popular in ML (e.g. Gaussian kernels), can be very efficient, to provide a large class of functions on which efficient calculation in large dimension is possible. However they are not related (at least directly) to an underlying measure supported on the data points.

Again, a distinguishing feature of the CD-kernel is its deep connexion with the underlying measure. It not only "encodes" the cloud of data points, but it also captures many essential features of the more complex measure supported on those data points.

Should be seen as another item in the arsenal of kernel methods in ML.
Other non-polynomial kernels, some popular in ML (e.g. Gaussian kernels), can be very efficient, to provide a large class of functions on which efficient calculation in large dimension is possible. However they are not related (at least directly) to an underlying measure supported on the data points.

Again, a distinguishing feature of the CD-kernel is its deep connexion with the underlying measure.

- It not only "encodes" the cloud of data points,
- but it also captures many essential features of the more complex measure supported on those data points.

Should be seen as another item in the arsenal of kernel methods in ML.
Other non-polynomial kernels, some popular in ML (e.g. Gaussian kernels), can be very efficient, to provide a large class of functions on which efficient calculation in large dimension is possible. However they are not related (at least directly) to an underlying measure supported on the data points.

Again, a distinguishing feature of the CD-kernel is its deep connexion with the underlying measure.

- It not only "encodes" the cloud of data points,
- but it also captures many essential features of the more complex measure supported on those data points.

Should be seen as another item in the arsenal of kernel methods in ML.
II: The CF to approximate piecewise continuous functions.

A typical approach is to approximate \(f : [0, 1] \to \mathbb{R} \) in some function space, e.g. its projection on \(\mathbb{R}[x]_n \subset L^2([0, 1]) \):

\[
x \mapsto \hat{f}_n(x) := \sum_{j=0}^{n} \left(\int_0^1 f(y) L_j(y) \, dy \right) L_j(x),
\]

with an orthonormal basis \((L_j)_{j \in \mathbb{N}} \) of \(L^2([0, 1]) \).

Ex: Chebyshev interpolant

Typical Gibbs phenomenon occurs.
Alternative **Positive Kernels** with better convergence properties have been proposed, still in the same framework:

- **Reproducing property** of the **CD kernel** is **LOST**
- **Preserve positivity** (e.g. when approximating a density)
- **Better convergence properties** than the **CD kernel**, in particular uniform convergence (for continuous functions) on arbitrary compact subsets
Observe that

\[\hat{f}_n = \int_0^1 K_n^\lambda(x, y) f(y) \, dy, \]

where \(K_n^\lambda \) is the CD-kernel of Lebesgue \(\lambda \) on \([0, 1]\).

A counter-intuitive detour: Instead of considering \(f : [0, 1] \to \mathbb{R} \)

Consider the graph \(\Omega \subset \mathbb{R}^2 \) of \(f \), i.e., the set

\[\Omega := \{(x, f(x)) : x \in [0, 1]\}. \]

and the measure \(d\phi(x, y) = \delta_{f(x)}(dy) \, dx \) supported on \(\Omega \).
Why should we do that as it implies going to \(\mathbb{R}^2 \) instead of staying in \(\mathbb{R} \)?

... because

- The support of \(\phi \) is exactly the graph of \(f \), and
- The CF \((x, y) \mapsto \Lambda_n^\phi(x, y) \) identifies the support of \(\phi \)!
So suppose that you are given point evaluations $\{f(x_i)\}_{i \leq N}$ of an unknown function f on $[0, 1]$, and let

$$v_d(x, y) := (1, x, y, x^2, xy, y^2, \ldots, xy^{d-1}, y^d).$$

Compute the degree-d empirical moment matrix:

$$M_d := \sum_{i=1}^{N} v_d((x_i, f(x_i))) v_d(x_i, f(x_i))^T,$$

by one pass over the data.

Compute the Christoffel function

$$x \mapsto \Lambda_d(x, y)^{-1} := v_d(x, y)^T M_d^{-1} v_d(x, y).$$

Approximate $f(x)$ by $\hat{f}_d(x) := \arg\min_y \Lambda_d(x, y)^{-1}$.

minimize a univariate polynomial! (easy)
So suppose that you are given point evaluations \(\{ f(x_i) \}_{i \leq N} \) of an unknown function \(f \) on \([0, 1]\), and let

\[
v_d(x, y) := (1, x, y, x^2, xy, y^2, \ldots, xy^{d-1}, y^d).
\]

Compute the degree-\(d\) empirical **moment matrix**:

\[
M_d := \sum_{i=1}^{N} v_d((x_i, f(x_i))) v_d(x_i, f(x_i))^T,
\]

by one pass over the data

Compute the **Christoffel function**

\[
x \mapsto \Lambda_d(x, y)^{-1} := v_d(x, y)^T M_d^{-1} v_d(x, y).
\]

Approximate \(f(x) \) by \(\hat{f}_d(x) := \arg \min_y \Lambda_d(x, y)^{-1} \).

minimize a univariate polynomial! (easy)
So suppose that you are given point evaluations \(\{ f(x_i) \}_{i \leq N} \) of an unknown function \(f \) on \([0, 1]\), and let
\[
v_d(x, y) := (1, x, y, x^2, x y, y^2, \ldots, x y^{d-1}, y^d).
\]

Compute the degree-\(d \) empirical moment matrix:
\[
M_d := \sum_{i=1}^{N} v_d((x_i, f(x_i))) v_d(x_i, f(x_i))^T,
\]
by one pass over the data

Compute the Christoffel function
\[
x \mapsto \Lambda_d(x, y)^{-1} := v_d(x, y)^T M_d^{-1} v_d(x, y).
\]

Approximate \(f(x) \) by \(\hat{f}_d(x) := \arg \min_y \Lambda_d(x, y)^{-1} \).

minimize a univariate polynomial! (easy)
So suppose that you are given point evaluations \(\{ f(x_i) \}_{i \leq N} \) of an unknown function \(f \) on \([0, 1]\), and let

\[
v_d(x, y) := (1, x, y, x^2, xy, y^2, \ldots, xy^{d-1}, y^d).
\]

\(\checkmark \) Compute the degree-\(d \) empirical moment matrix:

\[
M_d := \sum_{i=1}^{N} v_d((x_i, f(x_i))) v_d(x_i, f(x_i))^T,
\]

by one pass over the data.

\(\checkmark \) Compute the Christoffel function

\[
x \mapsto \Lambda_d(x, y)^{-1} := v_d(x, y)^T M_d^{-1} v_d(x, y).
\]

\(\checkmark \) Approximate \(f(x) \) by \(\hat{f}_d(x) := \arg \min_y \Lambda_d(x, y)^{-1} \).

\(\checkmark \) minimize a univariate polynomial! (easy)
Good convergence properties as $d \uparrow$

- L^1-convergence,
- even pointwise convergence on open sets with no point of discontinuity, and so almost uniform convergence.

Semi-algebraic approximation using Christoffel-Darboux kernel, Constructive Approximation, 2021
What if not all moments are available?

Suppose that the function \(f : [0, 1] \to \mathbb{R} \) to approximate is only known via its Fourier-Legendre coefficients

\[
\phi_{i,1} = \int_0^1 x^i f(x) \, dx, \quad i = 0, 1, \ldots
\]

and we do not have access to other moments

\[
\phi_{i,j} = \int_0^1 x^i f(x)^j \, dx, \quad j > 1; \ i = 0, 1, \ldots
\]

of the measure \(\phi(d(x, y)) = \delta_{f(x)}(dy) \lambda(dx) \)
Recall that $\lambda = (\lambda_i)_{i \in \mathbb{N}}$ is the moment-sequence of Lebesgue measure on $[0, 1]$, and consider the semidefinite programs indexed by $n \in \mathbb{N}$:

$$
P_n : \inf_{\psi} \{ \Theta_n(\psi) : M_n(\psi) \succeq 0 \}
$$

where the \inf is over all pseudo-moments $\psi = (\psi_{i,j})_{i,j \in \mathbb{N}^2}$, and Θ_n is a certain linear functional.
For every measure \(\nu \) on \([0, 1] \times \mathbb{R} \), let \(\nu = (\nu_{i,j})_{i,j \in \mathbb{N}} \) be the sequence of its moments.

Theorem

(i) For every \(n \in \mathbb{N} \),

\[
\Theta_n(\phi) \leq \Theta_n(\nu),
\]

for all measures \(\nu \) on \([0, 1] \times \mathbb{R} \) whose moment-sequence \(\nu \) is a feasible solution of \(P_n \).

(ii) Let \(\psi^n \) be an optimal solution of \(P_n \). Then

\[
\lim_{n \to \infty} \psi^n_{i,j} = \phi_{i,j} = \int_{[0,1]} x^i f(x)^j \, dx, \quad \forall i, j = 0, 1, \ldots
\]

Hence one may approximate accurately from finitely moments \(\phi_{i,j} \) as described earlier.

D. Henrion & J.B. Lass. Graph recovery from incomplete moment information (2021), Constructive Approximation.
Let \(\Omega \subset \mathbb{R}^n \) be the basic semi-algebraic set (with nonempty interior)

\[
\Omega := \{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \geq 0, \quad j = 1, \ldots, m \}
\]

with \(g_j \in \mathbb{R}[\mathbf{x}]_{d_j} \) and let \(s_j = \lceil \deg(g_j)/2 \rceil \). Let \(g_0 = 1 \) with \(s_0 = 0 \).

With \(t \) fixed, its associated quadratic module

\[
Q_t(\Omega) := \left\{ \sum_{j=0}^{m} \sigma_j g_j : \sigma_j \in \Sigma[\mathbf{x}]_{t-s_j} \right\} \subset \mathbb{R}[\mathbf{x}]
\]

is a convex cone with nonempty interior,
and with dual cone

\[Q_t(\Omega)^* := \{ y \in \mathbb{R}^{s(t)} : M_{t-s_j}(g_j y) \succeq 0, \ j = 0, \ldots, m \}, \]

where \(s(t) = \binom{n+t}{n} \).

Notice that if \(M_t(y)^{-1} \succ 0 \) for all \(t \)

one may define a family of polynomials \((P_\alpha)_{\alpha \in \mathbb{N}^n} \subset \mathbb{R}[x] \)

orthonormal w.r.t. \(y \), meaning that

\[L_y(P_\alpha \cdot P_\beta) = \delta_{\alpha=\beta}, \ \alpha, \beta \in \mathbb{N}^n, \]

and exactly as for measures, the Christoffel function \(\Lambda_t^y \)

\[x \mapsto \Lambda_t^y(x)^{-1} := \sum_{|\alpha| \leq t} P_\alpha(x)^2. \]
Theorem

For every $p \in \text{int}(Q_t(\Omega))$ there exists $y \in \text{int}(Q_t(\Omega)^*)$ such that

$$p(x) = \sum_{j=0}^{m} \left(v_{t-s_j}(x)^T M_t(g_j y)^{-1} v_{t-s_j}(x) \right) g_j(x)$$

$$= \sum_{j=0}^{m} (g_j \cdot y)_j (x)^{-1} g_j(x)$$

where $(g \cdot y)$ is the sequence of pseudo-moments

$$(g \cdot y)_\alpha := \sum_{\gamma} g_\gamma y_{\alpha+\gamma}, \quad \alpha \in \mathbb{N}^n \quad (if \ g(x) = \sum_{\gamma} g_\gamma x^\gamma).$$

In addition $L_y(p) = \sum_{j=0}^{m} \binom{n+t-s_j}{n}$.

Jean B. Lasserre semidefinite characterization
The proof combines

- a result by Nesterov on a one-to-one correspondence between \(\text{int}(Q_t(\Omega)) \) and \(\text{int}(Q_t(\Omega)^*) \), and

- the fact that

\[
\mathbf{v}_{t-s_j}(x)^T \mathbf{M}_t(g_j \mathbf{y})^{-1} \mathbf{v}_{t-s_j}(x) = \Lambda_{g_j \cdot \mathbf{y}}(x)^{-1}.
\]
In other words:

In Putinar certificate

\[p = \sum_{j=0}^{m} \sigma_j g_j, \quad \sigma_j \in \mathbb{R}[x]_{t-s_j}, \]

of strict positivity on \(\Omega \),

one may always choose the SOS weights \(\sigma_j \) in the form

\[\sigma_j(x) := \wedge_{t-s_j}^{g_j \cdot y}(x)^{-1}, \quad j = 0, \ldots, m, \]

for some sequence of pseudo-moments \(y \in \text{int}(Q_t(\Omega)^*) \).
THANK YOU!