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Motivation
Consider the following cloud of 2D-points (data set) below
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The red curve is the level set

Sγ := {x : Qd (x) ≤ γ }, γ ∈ R+

of a certain polynomial Qd ∈ R[x1, x2] of degree 2d .

� Notice that Sγ captures quite well the shape of the cloud.
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Not a coincidence!
� Surprisingly, low degree d for Qd is often enough to get a
pretty good idea of the shape of Ω (at least in dimension
p = 2,3)
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d = 4 , n = 500
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d = 5 , n = 500
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d = 3 , n = 100
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d = 4 , n = 100
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d = 5 , n = 100
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d = 3 , n = 500
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d = 5 , n = 500

 10 

 40 

 110 

 310 

 310 

 870 

 870 

 870  870 

 2510 

 2510 

 2510 

 2
51

0 

 7
09

0 

 7090 

 7090 

 7090 

 1
98

80
 

 19880 

 19880 

 67790 

 67790 

 6
77

90
 

 21 

d = 3 , n = 100
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d = 4 , n = 100
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d = 5 , n = 100
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d = 3 , n = 500
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d = 3 , n = 100
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d = 4 , n = 500

 1
0 

 10 

 10 

 10 

 20 

 20 

 30 

 30 

 50 

 50 

 50  80 

 80 

 80 

 80 

 80 
 150 

 150 

 150 

 150 

 150 

 250 

 250 

 250 

 2
50

 
 250 

 420 

 4
20

  420 

 15 

 15 

d = 5 , n = 500

 20 

 20 

 30 

 30 

 50 

 50 

 90 

 90 

 90  150 

 150 

 150 

 150 

 150 
 260 

 260 

 260 

 260 

 260 

 410 

 41
0 

 410 

 4
10

 

 410 

 1
15

0 

 21 

 21 

d = 3 , n = 100
 10 

 10 

 20 

 20 

 20 

 30 

 30 

 30 

 40 

 40 
 40 

 100 

 10
0 

 100 

d = 4 , n = 100

 10 

 10 

 10 

 20 

 20 

 40 

 40 

 40 

 60 

 60 

 60 

 60 

 110 

 11
0 

 110 

 110 

 110 

 200 

 2
00

 

 200 

 200 

 340 

 340 

 340 

 580 

 15 

 15 

d = 5 , n = 100
 20 

 30 

 30 

 70 

 70 

 70 

 130 

 130 

 130 

 130 

 130 

 250 

 2
50

 

 250 

 250 

 250 

 450 

 4
50

 

 450 

 450 

 770 

 77
0 

 21 

 21 

d = 3 , n = 50

 10 

 20 

 30  50 

 50 

 50 

 50 

 90 

 90 

 9
0 

 210 

 210 

 2
10

 

d = 4 , n = 50

 10 

 20 

 40 

 40 
 50 

 5
0 

 50 

 80 

 80 

 8
0 

 80 

 80 

 170 

 170 

 1
70

 

 510 

 510 

 5
10

 

 2040 

 2
04

0 

 15 

d = 5 , n = 50

 10 

 20 

 50 

 140 

 140 

 140 

 330 

 330 

 3
30

 

 330 

 770 

 770 

 7
70

 

 770 

 1990 

 1990 

 1990 

 1990 
 1

99
0 

 6620 

 6620 

 6
62

0 

 29130 

 29130 

 29
13

0 

 21 

d = 3 , n = 100

 10 

 20 

 30 

 40 

 40 

 40  70 

 7
0 

 7
0 

 70 

d = 4 , n = 100

 10 

 20 

 30 

 50 

 90 

 9
0 

 90 

 9
0 

 200 

 2
00

 

 2
00

 

 15 

d = 5 , n = 100

 10 

 20 
 30 

 50 

 80 

 80 

 190 

 1
90

 

 190 

 190 

 1
90

 

 640 

 6
40

 

 6
40

 

 21 

d = 3 , n = 500

 10 

 20 

 40 

 60 
 100 

 160 

 160 
 160 

 2
90

 

 290 

 2
90

 

d = 4 , n = 500

 10 

 20 

 30 
 50 

 100 

 170 

 330 

 330  330 

 830 

 8
30

 

 830 

 8
30

 

 15 

d = 5 , n = 500

 10 

 30 

 50 

 80 

 140 

 290 
 690 

 6
90

 

 690 

 6
90

 

 2
89

0 

 2890 

 2
89

0 

 21 

d = 3 , n = 51

 10 
 30 

 80 

 80 

 180 

 180 

 1
80

 

 420 

 420 

 4
20

 

 950 

 9
50

 

 2120 

 2
12

0 

 4310 

 4
31

0 

 8210 

 8
21

0 

d = 4 , n = 51

 10 

 70 

 70 

 440 

 440 

 1870 

 1870 

 6360 

 6360 
 19600 

 1
96

00
 

 55100 

 5
51

00
 

 135580 

 1
35

58
0 

 303730 

 3
03

73
0 

 15 

d = 5 , n = 51

 20  220 

 220 

 2840 

 2840 

 21150 

 21150 
 101710 

 455790 

 1665630  1
66

56
30

 

 5159190 

 5159190 

 13576230 

 1
35

76
23

0 

 21 

d = 3 , n = 101

 10 
 30 

 70 

 70 
 160 

 1
60

 

 370 

 3
70

 

 830 

 8
30

 

 1720 

 1
72

0 
 3

90
0 

d = 4 , n = 101

 10 

 20 

 70 

 270 

 270 

 1030 

 1
03

0 

 3670 

 3
67

0 

 10740 

 1
07

40
 

 26900 

 2
69

00
 

 7
61

10
 

 15 

d = 5 , n = 101

 20 

 40 

 160 

 160 

 1270 

 1270 

 9100 

 46700 

 4
67

00
 

 176990 

 1
76

99
0 

 541520 

 5
41

52
0 

 1
81

17
00

 

 21 

d = 3 , n = 501

 10 

 30 

 70 
 130 

 130 
 270 

 550 

 5
50

 

 1080 

 1
08

0 

 2140 

 2
14

0 

d = 4 , n = 501

 10 

 20 

 60 

 150 

 400 

 400 
 1110 

 1
11

0 

 2940  2
94

0  7630 

 7
63

0 

 18160 

 1
81

60
 

 15 

d = 5 , n = 501

 10 

 30 
 80 

 290 

 290 

 1350 

 1350 

 5290 
 19200 

 1
92

00
 

 63690 

 6
36

90
  188110 

 1
88

11
0 

 188110  21 

Jean B. Lasserre semidefinite characterization



Cook up your own convincing example

Perform the following simple operations on a preferred cloud of
2D-points: So let d = 2, p = 2 and s(d) =

(p+d
p

)
.

Let vd (x)T = (1, x1, x2, x2
1 , x1x2, . . . , x1xd−1

2 , xd
2 ). be the

vector of all monomials x i
1x j

2 of total degree i + j ≤ d
Form the real symmetric matrix of size s(d)

Md :=
1
N

N∑
i=1

vd (x(i)) vd (x(i))T ,

where the sum is over all points (x(i))i=1...,N ⊂ R2 of the
data set.
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So the matrix N ·Md reads:

∑
i


1 x1(i) x2(i) x1(i)2 . . . x2(i)d

x1(i) x1(i)2 x1(i) x2(i) x1(i)3 . . . x1(i) x2(i)d

x2(i) x1(i)x2(i) x2(i)2 x1(i)2x2(i) . . . x2(i)d+1

. . . . . . . . . . . . . . . . . .

x2(i)d x1(i) x2(i)d x2(i)d+1 x1(i)2x2(i)d . . . x2(i)2d
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� Note that typically, Md is what is called the MOMENT-matrix
of the empirical measure

µN :=
1
N

N∑
i=1

δx(i)

associated with a sample of size N, drawn according to an
unknown measure µ.

� The (usual) notation δx(i) stands for the DIRAC measure
supported at the point x(i) of R2.
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Next, form the SOS polynomial:

x 7→ Qd (x) := vd (x)T M−1
d vd (x).

= (1, x1, x2, x2
1 , . . . , x

d
2 ) M−1

d



1
x1
x2
x2

1
. . .

xd
2


Plot some level sets

Sγ := {x ∈ R2 : Qd (x) = γ }

for some values of γ, the thick one representing the
particular value γ =

(2+d
2

)
.
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The Christoffel function Λd : Rp → R+ is the reciprocal

x 7→ Qd (x)−1 , ∀x ∈ Rp

of the SOS polynomial Qd .

� It has a rich history in Approximation theory
and Orthogonal Polynomials.

� Among main contributors: Nevai, Totik, Króo, Lubinsky,
Simon, . . .

� ... The CF seems to be not so well-known in data analysis
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A refresher on orthogonal polynomials

Let µ be a (positive) measure supported on a compact set
Ω ⊂ Rp with nonempty interior.

A family (Pα)α∈Np ⊂ R[x] is orthonormal w.r.t. µ if∫
Ω

Pα(x) Pβ(x)µ(dx) = δα=β , ∀α, β ∈ Np .

� Here δα=β is the standard Kronecker symbol

Jean B. Lasserre semidefinite characterization



How to construct a family (Pα)α∈Np

Let Np
t := {α ∈ Np :

∑
i αi ≤ t} and suppose that all moments

µα :=

∫
Ω

xα dµ , ∀α ∈ Np
2t ,

are available.

� Then one may construct an orthonormal family (Pα)α∈Np
t

from determinants of moment matrices associated with µ.
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The moment matrix Md (µ) is the real symmetric matrix with
rows and columns indexed by (xα)α∈Np

d
, and with entries

Md (µ)(α, β) :=

∫
Ω

xα+β dµ = µα+β , ∀α, β ∈ Np
d .

� Illustrative example in dimension 2:

M1(µ) :=


1 X1 X2

1 µ00 µ10 µ01
X1 µ10 µ20 µ11
X2 µ01 µ11 µ02


is the moment matrix of µ of "degree d=1".
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One way to construct polynomials orthonormal w.r.t. µ
Fix an ordering of Np (e.g. lexicographic ordering)

(0,0)︸ ︷︷ ︸
degree0

, (1,0), (0,1)︸ ︷︷ ︸
degree1

, (2,0), (1,1), (0,2)︸ ︷︷ ︸
degree2

, (3,0), (2,1), . . .

Then P00(x) = 1 for all x = (x1, x2) ∈ R2.

Q10(x) := det
(
µ00 µ10
1 X1

)
= X1 − µ10.

Q01(x) := det

 µ00 µ10 µ01
µ10 µ20 µ11
1 X1 X2


= µ10µ11 − µ01µ20 − X1 (µ00µ11 − µ10µ01) + X2 (µ00µ20 − µ2

10)

� Then normalize, i.e. P10 = θQ10 with θ such that

θ2
∫

Ω
Q2

10 dµ = 1 .

and similarly with P01 = θQ01.
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Similarly,

Q20(x) := det


µ00 µ10 µ01 µ20
µ10 µ20 µ11 µ30
µ01 µ11 µ02 µ21
1 X1 X2 X 2

1



= X 2
1 det

 µ00 µ10 µ01
µ10 µ20 µ11
µ01 µ11 µ02

− X2 (· · · ) + X1 (· · · )− (· · · ).

and P20 = θQ20 with θ such that

θ2
∫

Ω
Q2

20 dµ = 1 .
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The vector space R[x]d viewed as a subspace of L2(µ) is a
Reproducing Kernel Hilbert Space (RKHS) .

Its reproducing kernel

(x,y) 7→ K µ
d (x,y) :=

∑
|α|≤d

Pα(x) Pα(y) , ∀x,y ∈ Rp ,

is called the Christoffel-Darboux kernel.
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The reproducing property

x 7→ q(x) =

∫
Ω

K µ
d (x, y) q(y) dµ(y) , ∀q ∈ R[x]d .

� useful to determinate the best degree-d L2(µ)-polynomial
approximation

inf
q∈R[x]d

‖f − q‖L2(µ)

of f ∈ L2(µ). Indeed:

x 7→ f̂d (x) :=
∑
α∈Np

d

(

f̂d,α︷ ︸︸ ︷∫
Ω

f (y) Pα(y) dµ) Pα(x) ∈ R[x]d

= arg min
q∈R[x]d

‖f − q‖L2(µ)
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and∫
Ω

(f − f̂d )2 dµ → 0 as d →∞

or, equivalently:
lim

d→∞
‖f − f̂d‖L2(µ) = 0 .
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Recall that the support Ω of µ is compact with nonempty
interior, and let (Pα)α∈Np be a family of orthonormal
polynomials w.r.t. µ.

Theorem
The Christoffel function Λµd : Rp → R+ is defined by:

ξ 7→ Λµd (ξ)−1 =
∑
|α|≤d

Pα(ξ)2 = K µ
d (ξ, ξ) , ∀ξ ∈ Rp ,

and it also satisfies the variational property:

Λµd (ξ) = min
P∈R[x]d

{
∫

Ω
P2 dµ : P(ξ) = 1 } , ∀ξ ∈ Rp .

� Alternatively

Λµd (ξ)−1 = vd (ξ)T Md (µ)−1 vd (ξ) , ∀ξ ∈ Rp .
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� Importantly, and crucial for applications, the Christoffel
function identifies the support Ω of the underlying measure µ.

Theorem
Let the support Ω of µ be compact with nonempty interior.
Then:

For all x ∈ int(Ω): K µ
d (x,x) = O(dp).

For all x ∈ int(Rp \ Ω): K µ
d (x,x) = Ω(exp(αd)) for some

α > 0.

� In particular, as d →∞,

dp Λµd (x) → 0 very fast whenever x 6∈ Ω.
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Growth rates for K µ
d (x,x) = Λµd (x)−1.

dp

exp(αd)

dp+1

dp+2

exp(α
√
d)

Jean B. Lasserre semidefinite characterization



Some other properties

Under some (restrictive) assumption on Ω and µ

lim
d→∞

s(d) Λµd (ξ) = fµ(ξ)ω(ξ)−1

where ω is the density of an equilibrium measure
intrinsically associated with Ω.
For instance with p = 1 and Ω = [−1,1], ω(ξ) =

√
1− ξ2.

If µ and ν have same support Ω and respective densities fµ
and fν w.r.t. Lebesgue measure on Ω, positive on Ω, then:

lim
d→∞

Λµd (ξ)

Λνd (ξ)
=

fµ(ξ)

fν(ξ)
, ∀ξ ∈ Ω .

� useful for density approximation
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If Ω is not full-dimensional and is supported on a real variety
V ⊂ Rp, then for sufficiently large degree d :

d 7→ rank(Md ) = q(d)

where q ∈ R[t ] is the Hilbert polynomial associated with V and
whose degree provides the dimension of V .

So one may use the rank of the moment matrix Md to identify
the dimension of the underlying variety.

� useful for manifold learning.
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The Christoffel function can be used in several important
applications of Machine Learning (e.g. outlier detection, density
approximation, manifold learning). In this case the measure µ is
the empirical probability measure µN associated with a cloud of
N points C ⊂ Rp (the data of interest).

� Computing Λµ
N

d requires only one pass over the data & no
optimization
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� Rank-one update
Updating the Christoffel function when the cloud of N points
one additional point ξ is added to the cloud of N points is easy.

(N + 1)µN+1 =
N∑

i=1

δx(i) + δξ = N µN + δξ

By Sherman-Morrison’s rank-one update formula

((N + 1) Md (µN+1))−1 = (N Md (µN) + vd (ξ)vd (ξ)T )−1

= (N Md (µN))−1 −
1

N2
Md (µN)−1vd (ξ)vd (ξ)T Md (µN)−1

1 + vd (ξ)Md (µN)−1vd (ξ)
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and therefore

� one obtains the simple update formula:

1
N + 1

Λµ
N+1

d (x) =
1
N

[
Λµ

N

d (x)− K µN

d (x , ξ)2

N(1 + Λµ
N

d (x))

]
, ∀x

1
N + 1

Λµ
N+1

d (ξ) =
1
N

Λµ
N

d (ξ)− 1
N2

Λµ
N

d (ξ)2

1 + Λµ
N

d (ξ)
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� For instance one may decide to classify as outliers all points
ξ such that Λµ

N

d (ξ) <
(p+d

p

)−1
.

� Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques, with only one
parameter (the degree d), and with no optimization involved.

� Lass. & Pauwels (2016) Sorting out typicality via the
inverse moment matrix SOS polynomial, NIPS 2016.
Lass. & Pauwels (2019) The empirical Christoffel function with
applications in data analysis, Adv. Comp. Math. 45, pp.
1439–1468
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inverse moment matrix SOS polynomial, NIPS 2016.
Lass. & Pauwels (2019) The empirical Christoffel function with
applications in data analysis, Adv. Comp. Math. 45, pp.
1439–1468
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Promising results in a recent collaboration with:

1- S. Dauzère-Péres, V. Borodin (EMSE) and the
STMicroelectronics company for

� data analysis of processing times for operations in a
job-shop (e.g. detection of anomalies, density estimation, etc. )

2- L. Travé, K. Ducharlet (LAAS-CNRS) and the Carl
Berger-Levrault company for detection of anomalies in data
analysis of wireless sensors network used in several
applications (e.g. units of air treatment, automatic bagage
conveyor in airports (data in form of temporal series),�

� K. Ducharlet, L. Travé, J.B. Lasserre, M.V. Le Lann, Y.
Miloudi. Leveraging the Christoffel Function for Outlier
Detection in Data Streams, submitted.
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Manifold learning

A measure µ on compact set Ω is completely determined by its
moments and therefore it should not be a surprise that its
moment matrix Md (µ) contains a lot of information.

� We have already seen that its inverse Md (µ)−1 defines the
Christoffel function.

� When µ is degenerate and its support Ω is contained in a
real algebraic variety then the kernel of Md (µ) identifies the
generators of a corresponding ideal of R[x].
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For instance let Ω ⊂ Sp−1 (the Euclidean unit sphere of Rp)
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Then the kernel of Md (µ) contains vectors of coefficients of
polynomials in the ideal generated by the quadratic polynomial
x 7→ g(x) := 1− ‖x‖2.

In fact and remarkably,

rank Md (µ) = p(d)

for some univariate polynomial p (the Hilbert polynomial
associated with the algebraic variety) which is of degree t if t is
the dimension of the variety.

For instance t = p − 1 if the support is contained in the sphere
Sp−1 of Rp.
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For ε > 0 sufficiently small, the Christoffel function

x 7→ Λµd (x) = vd (x) (Md (µ) + ε I)−1 vd (x)

and its empirical version (from a sample of data points on Ω)

x 7→ Λµ
N

d (x) = vd (x) (Md (µN) + ε I)−1 vd (x)

identifies correctly the support of Ω.

� Pauwels E., Putinar M., Lass. J.B. (2021). Data analysis
from empirical moments and the Christoffel function, Found.
Comput. Math. 21, pp. 243–273.
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� Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated

in the moment matrix Md (µ).

� They can be exploited to extract various useful information
on the data set.

� In addition, extraction of this information can be done via
quite simple linear algebra techniques.
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� However

for non modest dimension of data, matrix inversion of M−1
d does

not scale well ...

� On the other hand
for evaluation Λµd (ξ) at a point ξ ∈ Rp, the variational formulation

Λµd (ξ) = min
P∈R[x]d

{
∫

Ω
P2 dµ : P(ξ) = 1 } , ∀ξ ∈ Rp .

is the simple quadratic programming problem.

min
p∈Rs(d)

{pT Mdp : vd (ξ)T p = 1 },

which can be solved quite efficiently.
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Other non-polynomial kernels, some popular in ML (e.g.
Gaussian kernels), can be very efficient, to provide a large
class of functions on which efficient calculation in large
dimension is possible. However they are not related (at least
directly) to an underlying measure supported on the data
points.

� Again, a distinguishing feature of the CD-kernel is its deep
connexion with the underlying measure.

It not only "encodes" the cloud of data points,
but it also captures many essential features of the more
complex measure supported on those data points.

� Should be seen as another item in the arsenal of kernel
methods in ML.
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II: The CF to approximate piecewise continuous functions.

A typical approach is to approximate f : [0,1]→ R in some
function space, e.g. its projection on R[x]n ⊂ L2([0,1]):

x 7→ f̂n(x) :=
n∑

j=0

(∫ 1

0
f (y) Lj(y)dy

)
Lj(x) ,

with an orthonormal basis (Lj)j∈N of L2([0,1]).

Ex: Chebyshev interpolant

� Typical Gibbs phenomenon occurs.
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Alternative Positive Kernels with better convergence properties
have been proposed, still in the same framework:

Féjer, Jackson kernels, etc.
Reproducing property of the CD kernel is LOST
Preserve positivity (e.g when approximating a density)
Better convergence properties than the CD kernel, in
particular uniform convergence (for continuous functions)
on arbitrary compact subsets
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An alternative approach via the CF

Observe that

f̂n =

∫ 1

0
K λ

n (x , y) f (y) dy ,

where K λ
n is the CD-kernel of Lebesgue λ on [0,1].

A counter-intuitive detour: Instead of considering f : [0,1]→ R

� Consider the graph Ω ⊂ R2 of f , i.e., the set

Ω := { (x , f (x)) : x ∈ [0,1] } .
and the measure dφ(x , y) = δf (x)(dy) dx supported on Ω.
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Why should we do that as it implies going to R2 instead of
staying in R?

� ... because
The support of φ is exactly the graph of f , and
The CF (x , y) 7→ Λφn(x , y) identifies the support of φ!
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So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

by one pass over the data
� Compute the Christoffel function

x 7→ Λd (x , y)−1 := vd (x , y)T M−1
d vd (x , y) .

Approximate f (x) by f̂d (x) := arg miny Λd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre semidefinite characterization



So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

by one pass over the data
� Compute the Christoffel function

x 7→ Λd (x , y)−1 := vd (x , y)T M−1
d vd (x , y) .

Approximate f (x) by f̂d (x) := arg miny Λd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre semidefinite characterization



So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

by one pass over the data
� Compute the Christoffel function

x 7→ Λd (x , y)−1 := vd (x , y)T M−1
d vd (x , y) .

Approximate f (x) by f̂d (x) := arg miny Λd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre semidefinite characterization



So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

by one pass over the data
� Compute the Christoffel function

x 7→ Λd (x , y)−1 := vd (x , y)T M−1
d vd (x , y) .

Approximate f (x) by f̂d (x) := arg miny Λd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre semidefinite characterization



Good convergence properties as d ↑
� L1-convergence,
� even pointwise convergence on open sets with no point
of discontinuity, and so almost uniform convergence.

S. Marx, E. Pauwels, T. Weisser, D. Henrion, J.B. Lass.
Semi-algebraic approximation using Christoffel-Darboux kernel,
Constructive Approximation, 2021
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What if not all moments are available?

Suppose that the function f : [0,1]→ R to approximate is only
known via its Fourier-Legendre coefficients

φi,1 =

∫ 1

0
x i f (x) dx , i = 0,1, . . .

and we do not have access to other moments

φi,j =

∫ 1

0
x i f (x)j dx , j > 1; i = 0,1, . . .

of the measure φ(d(x, y)) = δf (x)(dy)λ(dx)
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By moment-matrix completion

Recall that λ = (λi)i∈N is the moment-sequence of Lebesgue
measure on [0,1], and consider the semidefinite programs
indexed by n ∈ N:

Pn : inf
ψ
{Θn(ψ) : Mn(ψ) � 0

ψi,0 = λi , i ∈ N
ψi,1 = φi,1 i ∈ N } ,

where the inf is over all pseudo-moments ψ = (ψi,j)i,j∈N2
2n

, and
Θn is a certain linear functional.
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For every measure ν on [0,1]× R, let ν = (νi,j)i,j∈N be the
sequence of its moments.

Theorem
(i) For every n ∈ N,

Θn(φ) ≤ Θn(ν) ,

for all measures ν on [0,1]×R whose moment-sequence ν is a
feasible solution of Pn.
(ii) Let ψn be an optimal solution of Pn. Then

lim
n→∞

ψn
i,j = φi,j =

∫
[0,1]

x i f (x)j dx , ∀i , j = 0,1, . . .

� Hence one may approximate accurately from finitely
moments φi,j as described earlier.
� D. Henrion & J.B. Lass. Graph recovery from incomplete
moment information (2021), Constructive Approximation.
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Christoffel function and Positive polynomials

Let Ω ⊂ Rn be the basic semi-algebraic set (with nonempty
interior)

Ω := {x ∈ Rn : gj(x) ≥ 0 , j = 1, . . . ,m }

with gj ∈ R[x]dj and let sj = ddeg(gj)/2e. Let g0 = 1 with s0 = 0.

With t fixed, its associated quadratic module

Qt (Ω) := {
m∑

j=0

σj gj : σj ∈ Σ[x]t−sj } ⊂ R[x]

is a convex cone with nonempty interior,
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and with dual cone

Qt (Ω)∗ := { y ∈ Rs(t) : Mt−sj (gj y) � 0 , j = 0, . . . ,m },

where s(t) =
(n+t

n

)
.

Notice that if Mt (y)−1 � 0 for all t

one may define a family of polynomials (Pα)α∈Nn ⊂ R[x]
orthonormal w.r.t. y , meaning that

Ly (Pα · Pβ) = δα=β , α, β ∈ Nn ,

and exactly as for measures, the Christoffel function Λy
t

x 7→ Λy
t (x)−1 :=

∑
|α|≤t

Pα(x)2 .
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Theorem
For every p ∈ int(Qt (Ω)) there exists y ∈ int(Qt (Ω)∗) such that

p(x) =
m∑

j=0

(
vt−sj (x)T Mt (gj y)−1 vt−sj (x)

)
gj(x)

=
m∑

j=0

Λ
gj ·y
t−sj

(x)−1 gj(x)

where (g · y) is the sequence of pseudo-moments

(g · y)α :=
∑
γ

gγ yα+γ , α ∈ Nn (if g(x) =
∑

γ gγ xγ).

In addition Ly (p) =
∑m

j=0
(n+t−sj

n

)
.
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The proof combines

-� a result by Nesterov on a one-to-one correspondence
between int(Qt (Ω)) and int(Qt (Ω)∗), and

-� the fact that

vt−sj (x)T Mt (gj y)−1 vt−sj (x) = Λ
gj ·y
t−sj

(x)−1 .
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In other words:
In Putinar certificate

p =
m∑

j=0

σj gj , σj ∈ R[x]t−sj ,

of strict positivity on Ω,

� one may always choose the SOS weights σj in the form

σj(x) := Λ
gj ·y
t−sj

(x)−1 , j = 0, . . . ,m ,

for some sequence of pseudo-moments y ∈ int(Qt (Ω)∗).
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THANK YOU!
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