

Inner and outer approximate quantifier elimination for general reachability problems

Eric Goubault, Sylvie Putot

Sets of reachable states

For discrete or continuous systems φ (control *u*, perturbations *w*, initial states *x*₀)

Reachability under uncertainties

Maximal reachability: set of states z (maximally) reachable at time s: $\{z \mid \exists x_0 \in \mathbf{Z}_0, \exists u : [0, s] \rightarrow \mathbb{U}, \exists w \in [0, s] \rightarrow \mathbb{W} \text{ s.t. } \varphi(s; x_0, u, w) = z \}$

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_0), intractable in general: need for outer-approximations

Reachability under uncertainties

Maximal reachability: set of states z (maximally) reachable at time s: $\{z \mid \exists x_0 \in \mathbb{Z}_0, \exists u : [0, s] \rightarrow \mathbb{U}, \exists w \in [0, s] \rightarrow \mathbb{W} \text{ s.t. } \varphi(s; x_0, u, w) = z \}$

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_0), intractable in general: need for inner and outer-approximations

Reachability under uncertainties

Maximal reachability: set of states z (maximally) reachable at time s: $\{z \mid \exists x_0 \in \mathbb{Z}_0, \exists u : [0, s] \rightarrow \mathbb{U}, \exists w \in [0, s] \rightarrow \mathbb{W} \text{ s.t. } \varphi(s; x_0, u, w) = z \}$

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_0), intractable in general: need for inner and outer-approximations

Reachability under uncertainties

 $\begin{array}{ll} \text{Minimal reachability: set of states } z \text{ (minimally) reachable at time } s:\\ \{z \mid \forall u : [0, s] \rightarrow \mathbb{U}, \forall w \in [0, s] \rightarrow \mathbb{W}, \exists x_0 \in \mathbf{Z}_0 \text{ s.t. } \varphi(s; x_0, u, w) = z \end{array} \}$

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_0), intractable in general: need for inner and outer-approximations

Reachability under uncertainties

Or "robust reachability" (E. Goubault, S. Putot: Inner and outer reachability for the verification of control systems. HSCC 2019): $\{z \mid \forall w \in [0, s] \rightarrow \mathbb{W}, \exists x_0 \in \mathbb{X}_0, \exists u : [0, s] \rightarrow \mathbb{U}, \varphi(s; x_0, u, w) = z\}$

Classical reachability (inner and outer approximations)

"Robust reachability" (HSCC 2019): $\{z \mid \forall w \in [0, s] \rightarrow \mathbb{W}, \exists x_0 \in \mathbb{X}_0, \exists u : [0, s] \rightarrow \mathbb{U}, z = \varphi(t; x_0, u, w)\}$

This presentation: add more quantifiers!

Why? Wait for next slide!

This presentation is part of a larger programme

- Fast and precise set-based methods for guaranteed inner/outer approximations of Quantifier Elimination (QE, or Quantified Constraint Solving)
- We focus here on simple 0th-order (interval based) approximations of QE, useful for "general reachability" problems

More, or different alternations of quantifiers?

Reminder: robust reachability of HSCC 2019

Given $\varphi(t; x_0, u, w)$ the flow of an ODE at time t from x_0 with control u and disturbance w, for time $t \in [0, T]$, compute:

$${\it R}_{\forall \exists}(\varphi)(t)=\{z \ \mid \ \forall w\in [0,s] \rightarrow \mathbb{W}, \ \exists x_0\in \mathbb{X}_0, \ \exists u\in [0,s] \rightarrow \mathbb{U}, z=\varphi(t;x_0,u,w)\}$$

(can a controller compensate disturbances or change of values of parameters that are known to the controller?)

Alternative problem (control is not aware of perturbations)

Can a controller not knowing the disturbance still reach the target, up to some (time) relaxation?

$$R_{\exists \forall \exists}(\varphi) = \{ z \in \mathbb{R}^m \mid \exists u \in [0, s] \to \mathbb{U}, \exists x_0 \in \mathbb{X}_0, \forall w \in [0, s] \to \mathbb{W}, \\ \exists s \in [0, T], z = \varphi(s; x_0, u, w) \}$$

But also

Motion planning

- Find possible waypoints and final state, for a controller that takes *k* constrained actions
- Gives k alternations of ∀∃ quantifiers, for k waypoints

General temporal logics formulas, and hyperproperties

- behavioral robustness,
- comparisons of controllers

Etc.

Problem statement

General quantified problems

For $f : \mathbb{R}^{p} \to \mathbb{R}^{m}$ (e.g. flow function etc.), generally supposed continuously differentiable, consider alternations of quantifiers \forall/\exists reachability problem:

$$Rp(f) = \{z \in \mathbb{R}^m \mid Q_1x_1 \in [-1, 1], Q_2x_2 \in [-1, 1], \dots, \\ Q_{p-1}x_{p-1} \in [-1, 1], Q_px_p \in [-1, 1], z = f(x_1, x_2, \dots, x_p)\}$$

where $Q_i = \forall$ or $Q_i = \exists$.

Discussed in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

- Up to reparametrization, quantified problems with other boxes than $[-1,1]^{j_i}$
- Also possible to consider more general sets over which to quantify variables x_i by suitable outer and inner approximations as boxes
- Can consider e.g. control *u* and disturbance *w* as piecewise constant signals over a bounded time horizon.

Steps of the construction

Step 1: The case of linear scalar functions $f: \mathbb{R}^p \to \mathbb{R}$

Exact solution via a basic two-player game

Steps of the construction

Step 1: The case of linear scalar functions f: $\mathbb{R}^p \to \mathbb{R}$ Exact solution via a basic two-player game

Step 2: The case on non-linear scalar functions $f : \mathbb{R}^{p} \to \mathbb{R}$ Use suitable inner and outer approximate linearizations

Steps of the construction

Step 1: The case of linear scalar functions f: $\mathbb{R}^p \to \mathbb{R}$ Exact solution via a basic two-player game

Step 2: The case on non-linear scalar functions $f : \mathbb{R}^p \to \mathbb{R}$ Use suitable inner and outer approximate linearizations

Step 3: The general case, non-linear functions $f : \mathbb{R}^p \to \mathbb{R}^n$ Use relaxations of quantified formulas involved at different components of f

Step 1, quantified reachability for scalar linear functions

Let us play a simple two-player game!

f is the affine function $f(x_1, x_2, ..., x_p) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_p x_p$; variables x_i are either quantified by Q_i being \exists or by \forall .

The players

Let us play a simple two-player game!

f is the affine function $f(x_1, x_2, ..., x_p) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_p x_p$; variables x_i are either quantified by Q_i being \exists or by \forall .

The rules of the game

Compute $S = [\underline{S}, \overline{S}]$, the quantified reachable interval; initially $S = \{f(0, ..., 0)\}$

Let us play a simple two-player game!

f is the affine function $f(x_1, x_2, ..., x_p) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_p x_p$; variables x_i are either quantified by Q_i being \exists or by \forall .

The rules of the game

Compute $S = [\underline{S}, \overline{S}]$, the quantified reachable interval; initially $S = \{f(0, ..., 0)\}$

Let us play a simple two-player game!

f is the affine function $f(x_1, x_2, ..., x_p) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_p x_p$; variables x_i are either quantified by Q_i being \exists or by \forall .

The rules of the game

ă

Compute $S = [\underline{S}, \overline{S}]$, the quantified reachable interval; initially $S = \{f(0, ..., 0)\}$

• W widens S by
$$[-\delta_i, \delta_i]$$
 (S-= δ_i , , $\overline{S}+=\delta_i$)

Let us play a simple two-player game!

f is the affine function $f(x_1, x_2, ..., x_p) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_p x_p$; variables x_i are either quantified by Q_i being \exists or by \forall .

The rules of the game

Compute $S = [\underline{S}, \overline{S}]$, the quantified reachable interval; initially $S = \{f(0, ..., 0)\}$

• widens S by
$$[-\delta_i, \delta_i]$$
 ($\underline{S} = \delta_i$, , $\overline{S} + = \delta_i$)
• shrinks S by $[-\delta_i, \delta_i]$ ($\underline{S} + = \delta_i$, , $\overline{S} - = \delta_i$)

Let us play a simple two-player game!

f is the affine function $f(x_1, x_2, ..., x_p) = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + ... + \delta_p x_p$; variables x_i are either quantified by Q_i being \exists or by \forall .

The rules of the game

Compute $S = [\underline{S}, \overline{S}]$, the quantified reachable interval; initially $S = \{f(0, ..., 0)\}$

A game where the angel wins

Consider
$$f = f_1 : \mathbb{R}^4 \to \mathbb{R}$$
:
 $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ and compute:
 $R_{\exists \forall \exists}(f) = \{z_1 \in \mathbb{R} | \ \exists x_1 \in [-1, 1], \ \forall x_2 \in [-1, 1], \ \forall x_4 \in [-1, 1], \ \exists x_3 \in [-1, 1], \ z_1 = f_1(x_1, x_2, x_3, x_4)\}$

Let's play! - round i = p = 4

$$z_{1} = \begin{bmatrix} z_{1}^{c} & -\delta_{x_{3}}, z_{1}^{c} & +\delta_{x_{3}} \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -3, 2 & +3 \end{bmatrix}$$

where $z_1^c = f(0, 0, 0, 0) = 2$

A game where the angel wins

Consider
$$f = f_1 : \mathbb{R}^4 \to \mathbb{R}$$
:
 $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ and compute:
 $R_{\exists \forall \exists}(f) = \{z_1 \in \mathbb{R} | \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \forall x_4 \in [-1, 1], \exists x_3 \in [-1, 1], z_1 = f_1(x_1, x_2, x_3, x_4)\}$

Let's play! - round i = 3

$$z_{1} = \begin{bmatrix} z_{1}^{c} & +\delta_{x_{4}} & -\delta_{x_{3}}, z_{1}^{c} & -\delta_{x_{4}} + \delta_{x_{3}} \end{bmatrix}$$
$$= \begin{bmatrix} 2 & +1 & -3, & 2 & -1 & +3 \end{bmatrix}$$

Angel wins 1 - 3 < -1 + 3!

A game where the angel wins

Consider
$$f = f_1 : \mathbb{R}^4 \to \mathbb{R}$$
:
 $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ and compute:
 $R_{\exists \forall \exists}(f) = \{z_1 \in \mathbb{R} | \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \forall x_4 \in [-1, 1], \exists x_3 \in [-1, 1], z_1 = f_1(x_1, x_2, x_3, x_4)\}$
Let's play! - round $i = 2$

$$z_{1} = \begin{bmatrix} z_{1}^{c} + \delta_{x_{2}} + \delta_{x_{4}} - \delta_{x_{3}}, z_{1}^{c} & -\delta_{x_{2}} - \delta_{x_{4}} + \delta_{x_{3}} \end{bmatrix}$$
$$= \begin{bmatrix} 2 + 1 + 1 & -3, 2 & -1 & -1 & +3 \end{bmatrix}$$

Angel still wins 1+1-3<-1-1+3!

A game where the angel wins

Consider
$$f = f_1 : \mathbb{R}^4 \to \mathbb{R}$$
:
 $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ and compute:
 $R_{\exists \forall \exists}(f) = \{z_1 \in \mathbb{R} | \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \forall x_4 \in [-1, 1], \exists x_3 \in [-1, 1], z_1 = f_1(x_1, x_2, x_3, x_4)\}$
Let's play! - round $i = 1$

$$z_{1} = \begin{bmatrix} z_{1}^{c} - \delta_{x_{1}} + \delta_{x_{2}} + \delta_{x_{4}} - \delta_{x_{3}}, z_{1}^{c} + \delta_{x_{1}} - \delta_{x_{2}} - \delta_{x_{4}} + \delta_{x_{3}} \end{bmatrix}$$

= $\begin{bmatrix} 2 & -2 & +1 & +1 & -3, & 2 & +2 & -1 & -1 & +3 \end{bmatrix} = \begin{bmatrix} -1, 5 \end{bmatrix}$

Final win from the angel side: -2 + 1 + 1 - 3 < 2 - 1 - 1 + 3!

Slightly changing the game so that the devil wins

Consider $f = f_1 : \mathbb{R}^4 \to \mathbb{R}$ again - exchanging the roles of x_3 and x_4 :

 $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ but now compute:

$$\begin{aligned} & \mathcal{R}_{\exists \forall \exists}(f) = \{z_1 \in \mathbb{R} | \exists x_1 \in [-1,1], \ \forall x_2 \in [-1,1], \ \forall x_3 \in [-1,1], \\ & \exists x_4 \in [-1,1], \ z_1 = f_1(x_1,x_2,x_3,x_4) \} \end{aligned}$$

Let's play! - round i = m = 4

$$z_{1} = \begin{bmatrix} z_{1}^{c} & -\delta_{x_{4}}, z_{1}^{c} & +\delta_{x_{4}} \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1, & 2 & +1 \end{bmatrix}$$

where $z_1^c = f(0, 0, 0, 0) = 2$

Slightly changing the game so that the devil wins

Consider $f = f_1 : \mathbb{R}^4 \to \mathbb{R}$ again - exchanging the roles of x_3 and x_4 :

 $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ but now compute:

 $\begin{aligned} & \mathcal{R}_{\exists \forall \exists}(f) = \{z_1 \in \mathbb{R} | \exists x_1 \in [-1,1], \ \forall x_2 \in [-1,1], \ \forall x_3 \in [-1,1], \\ & \exists x_4 \in [-1,1], \ z_1 = f_1(x_1,x_2,x_3,x_4) \} \end{aligned}$

Let's play! - round i = 3

Demon wins 3-1 > -3+1 and $S = \emptyset$!

Slightly changing the game so that the devil wins

Consider $f = f_1 : \mathbb{R}^4 \to \mathbb{R}$ again - exchanging the roles of x_3 and x_4 : $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ but now compute:

 $\begin{aligned} R_{\exists \forall \exists}(f) &= \{ z_1 \in \mathbb{R} | \exists x_1 \in [-1,1], \ \forall x_2 \in [-1,1], \ \forall x_3 \in [-1,1], \\ \exists x_4 \in [-1,1], \ z_1 &= f_1(x_1,x_2,x_3,x_4) \} \end{aligned}$

Let's play! - round i = 3

$$z_{1} = \begin{bmatrix} z_{1}^{c} & +\delta_{x_{3}} & -\delta_{x_{4}}, z_{1}^{c} & -\delta_{x_{3}} & +\delta_{x_{4}} \end{bmatrix}$$
$$= \begin{bmatrix} 2 & +3 & -1, & 2 & -3 & +1 \end{bmatrix}$$

Demon wins 3-1 > -3+1 and $S = \emptyset$!

The general formula, and its proof, in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

Eric Goubault, Sylvie Putot

Step 2, quantified reachability for scalar non-linear functions

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem for $f : \mathbb{R}^m \to \mathbb{R}$

Suppose we can bound partial derivatives of f by $\nabla_j = [\underline{\nabla}_j, \overline{\nabla}_j]$ (i = 1, ..., p):

$$\left\{ \left| \frac{\partial f}{\partial x_j}(x_1,\ldots,x_i,0,\ldots,0) \right| \mid x_l \in [-1,1], \ l=1,\ldots,i \right\} \subseteq \nabla_j$$

Then:

Writing inner and outer contributions: $I_i = \overline{\nabla}_j [-1, 1]$, $O_j = \overline{\nabla}_j [-1, 1]$, j = 1, ..., p we get inner and outer-approximations of f:

$$f(0, \ldots, 0) + \sum_{i=1}^{p} I_i \subseteq f([-1, 1]^p) \subseteq f(0, \ldots, 0) + \sum_{i=1}^{p} O_i$$

See e.g. A. Goldsztejn. 2012. Modal Intervals Revisited, Part 2: A Generalized Interval Mean Value Extension. Reliable Computing 2012) and E. Goubault, S. Putot: Inner and outer reachability for the verification of control systems. HSCC 2019

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem

Then:

Writing inner and outer contributions: $I_i = \sum_j [-1, 1]$, $O_j = \overline{\nabla}_j [-1, 1]$, j = 1, ..., p we get inner and outer-approximations of f:

$$f(0, \ldots, 0) + \sum_{i=1}^{p} I_i \subseteq f([-1, 1]^p) \subseteq f(0, \ldots, 0) + \sum_{i=1}^{p} O_i$$

Eric Goubault, Sylvie Putot

13/33

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem

Then:

Writing inner and outer contributions: $I_i = \underline{\nabla}_j [-1, 1]$, $O_j = \overline{\nabla}_j [-1, 1]$, j = 1, ..., p we get inner and outer-approximations of f:

$$f(0,...,0) + \sum_{i=1}^{p} I_i \subseteq f([-1,1]^p) \subseteq f(0,...,0) + \sum_{i=1}^{p} O_i$$

(other approximation methods, higher-order in particular, see e.g. Eric Goubault Sylvie Putot, "Tractable

higher-order under-approximating AE extensions for non-linear systems" ADHS 2021

Example of inner-outer approximation by generalized mean value theorem

Example, function $g~:~\mathbb{R}^3
ightarrow \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute inner and outer approximation of the range of g, i.e. of $R_{\exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \exists x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

Individual contributions of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \text{ and } c = g(0, 0, 0) = 11.$
• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ I_1 = 0, \ O_2 = [-3, 3], \ I_2 = [-1, 1] \text{ and } O_3 = [-10, 10], \ I_3 = [-4, 4].$

Inner and outer-approximations

$$g(0,\ldots,0)+\sum_{i=1}^p I_i\subseteq g([-1,1]^p)\subseteq g(0,\ldots,0)+\sum_{i=1}^p O_i$$

Example of inner-outer approximation by generalized mean value theorem

Example, function $g~:~\mathbb{R}^3
ightarrow \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute inner and outer approximation of the range of *g*, i.e. of $R_{\exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \exists x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

Individual contributions of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \text{ and } c = g(0, 0, 0) = 11.$
• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ I_1 = 0, \ O_2 = [-3, 3], \ I_2 = [-1, 1] \text{ and } O_3 = [-10, 10], \ I_3 = [-4, 4].$

Inner and outer-approximations

$$11 + [-0,0] + [-1,1] + [-4,4] \subseteq g([-1,1]^p) \subseteq 11 + [-\frac{1}{2},\frac{1}{2}] + [-3,3] + [-10,10]$$

Eric Goubault, Sylvie Putot

Example of inner-outer approximation by generalized mean value theorem

Example, function $g~:~\mathbb{R}^3
ightarrow \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute inner and outer approximation of the range of *g*, i.e. of $R_{\exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \exists x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

Individual contributions of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \text{ and } c = g(0, 0, 0) = 11.$
• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ I_1 = 0, \ O_2 = [-3, 3], \ I_2 = [-1, 1] \text{ and } O_3 = [-10, 10], \ I_3 = [-4, 4].$

Inner and outer-approximations

$$[6,16] \subseteq g([-1,1]^{
ho}) \subseteq [-2.5,24.5]$$

(real range [4.25, 22.25])

Let us play a slightly more involved two-player game!

f is the non-linear function with I_i and O_j for each variable x_i , either quantified by Q_i being \exists or by \forall .

The players, again!

Let us play a slightly more involved two-player game!

f is the non-linear function with I_i and O_j for each variable x_i , either quantified by Q_i being \exists or by \forall .

The rules of the outer-approximation game

Compute $S = [\underline{S}, \overline{S}]$, interval outer-approximating the quantified reachable set; initially $S = \{f(0, ..., 0)\}$

• At round *i* from *p* to 1, where $Q_i = \exists$, the plays if $Q_i = \forall$

• Widens S by the maximal contribution O_i (S-= O_i , \overline{S} += \overline{O}_i)

• \mathbf{N} shrink S by the minimal contribution I_i ($\underline{S} + = \underline{I}_i, \overline{S} - = \overline{I}_i$)

• Stops either after step i = 1, wins or $S = \emptyset$ and wins

Let us play a slightly more involved two-player game!

f is the non-linear function with I_i and O_j for each variable x_i , either quantified by Q_i being \exists or by \forall .

The rules of the inner-approximation game

Compute $S = [\underline{S}, \overline{S}]$, interval inner-approximating the quantified reachable set; initially $S = \{f(0, ..., 0)\}$

• At round *i* from *p* to 1, where $Q_i = \exists$, the plays if $Q_i = \forall$

• widens *S* by the minimal contribution
$$I_i$$
 ($\underline{S} = \underline{I}_i$, $\overline{S} = \overline{I}_i$)

• \mathcal{N}^{\uparrow} shrink S by the maximal contribution O_i $(\underline{S} + = \underline{O}_i, \overline{S} - = \overline{O}_i)$

• Stops either after step i = 1, wins or $S = \emptyset$ and wins

Let us play a slightly more involved two-player game!

f is the non-linear function with I_i and O_j for each variable x_i , either quantified by Q_i being \exists or by \forall .

The rules of the inner-approximation game

Compute $S = [\underline{S}, \overline{S}]$, interval inner-approximating the quantified reachable set; initially $S = \{f(0, ..., 0)\}$

• At round *i* from *p* to 1, \bigtriangledown plays if $Q_i = \exists$, $\ref{eq:plays}$ plays if $Q_i = \forall$

• Widens S by the minimal contribution I_i ($\underline{S} = \underline{I}_i, \overline{S} = \overline{I}_i$)

• Shrink S by the maximal contribution O_i $(\underline{S} + = \underline{O}_i, \overline{S} - = \overline{O}_i)$

• Stops either after step i = 1, wins or $S = \emptyset$ and wins

Formalized theorem and proof in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

Example, function $g \ : \ \mathbb{R}^3 o \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3], \ \nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \ \text{and} \ c = g(0, 0, 0) = 11.$$

• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ I_1 = 0, \ O_2 = [-3, 3], \ I_2 = [-1, 1] \ \text{and} \ O_3 = [-10, 10], \ I_3 = [-4, 4].$

Outer-approximation of $R_{\exists \forall \exists}(g)$ - round 3

$$\begin{bmatrix} c & +\underline{O}_{3}, \ c & +\overline{O}_{3} \end{bmatrix}$$

= $\begin{bmatrix} 11 & -10, \ 11 & +10 \end{bmatrix}$

Eric Goubault, Sylvie Putot

Example, function $g \ : \ \mathbb{R}^3 o \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3], \ \nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \ \text{and} \ c = g(0, 0, 0) = 11.$$

• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ l_1 = 0, \ O_2 = [-3, 3], \ l_2 = [-1, 1] \ \text{and} \ O_3 = [-10, 10], \ l_3 = [-4, 4].$

Outer-approximation of $R_{\exists \forall \exists}(g)$ - round 2

$$\begin{bmatrix} c & +\bar{I}_2 & +\underline{O}_3, & c & +\underline{I}_2 & +\overline{O}_3 \end{bmatrix} = \begin{bmatrix} 11 & +1 & -10, & 11 & -1 & +10 \end{bmatrix}$$

Eric Goubault, Sylvie Putot

Example, function $g \ : \ \mathbb{R}^3 o \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3], \ \nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \ \text{and} \ c = g(0, 0, 0) = 11.$$

• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ l_1 = 0, \ O_2 = [-3, 3], \ l_2 = [-1, 1] \ \text{and} \ O_3 = [-10, 10], \ l_3 = [-4, 4].$

Outer-approximation of $R_{\exists\forall\exists}(g)$ - round 1, Angel wins

$$\begin{bmatrix} c & +\underline{O}_1 & +\overline{I}_2 & +\underline{O}_3, & c & +\overline{O}_1 & +\underline{I}_2 & +\overline{O}_3 \end{bmatrix}$$

= $\begin{bmatrix} 11 & -\frac{1}{2} & +1 & -10, & 11 & +\frac{1}{2} & -1 & +10 \end{bmatrix} = \begin{bmatrix} 1.5, 20.5 \end{bmatrix}$

Eric Goubault, Sylvie Putot

16/33

Example, function $g~:~\mathbb{R}^3
ightarrow \mathbb{R}$ on $[-1,1]^3$

$$g(x_1, x_2, x_3) = \frac{x_1^2}{4} + (x_2 + 1)(x_3 + 2) + (x_3 + 3)^2.$$

Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3], \ \nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \ \text{and} \ c = g(0, 0, 0) = 11.$$

• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ l_1 = 0, \ O_2 = [-3, 3], \ l_2 = [-1, 1] \ \text{and} \ O_3 = [-10, 10], \ l_3 = [-4, 4].$

Outer-approximation of $R_{\exists\forall\exists}(g)$ - round 1, Angel wins

$$\begin{bmatrix} c & +\underline{O}_1 & +\overline{I}_2 & +\underline{O}_3, & c & +\overline{O}_1 & +\underline{I}_2 & +\overline{O}_3 \end{bmatrix}$$

= $\begin{bmatrix} 11 & -\frac{1}{2} & +1 & -10, & 11 & +\frac{1}{2} & -1 & +10 \end{bmatrix} = \begin{bmatrix} 1.5, 20.5 \end{bmatrix}$

(in comparison, the sampling based estimation is [6.25, 16.25])

Eric Goubault, Sylvie Putot

Quantified reachability

An inner-approximation game

Example, function $g : \mathbb{R}^3 \to \mathbb{R}$ on $[-1, 1]^3$ Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}.$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \text{ and } c = g(0, 0, 0) = 11.$

•
$$O_1 = \lfloor -\frac{1}{2}, \frac{1}{2} \rfloor$$
, $I_1 = 0$, $O_2 = [-3, 3]$, $I_2 = [-1, 1]$ and $O_3 = [-10, 10]$, $I_3 = [-4, 4]$.

Inner-approximation of $R_{\exists\forall\exists}(g)$ - round 3

$$\begin{bmatrix} c & +\underline{I}_3, & c & +\overline{I}_3 \\ = \begin{bmatrix} 11 & -4, & 11 & +4 \end{bmatrix}$$

An inner-approximation game

Example, function $g : \mathbb{R}^3 \to \mathbb{R}$ on $[-1, 1]^3$ Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}.$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \text{ and } c = g(0, 0, 0) = 11.$

•
$$O_1 = \lfloor -\frac{1}{2}, \frac{1}{2} \rfloor$$
, $I_1 = 0$, $O_2 = [-3, 3]$, $I_2 = [-1, 1]$ and $O_3 = [-10, 10]$, $I_3 = [-4, 4]$.

Inner-approximation of $R_{\exists\forall\exists}(g)$ - round 2

$$\begin{bmatrix} c & +\overline{O}_2 & +\underline{I}_3, & c & +\underline{O}_2 & +\overline{I}_3 \\ = \begin{bmatrix} 11 & +3 & -4, & 11 & -3 & +4 \end{bmatrix}$$

An inner-approximation game

Example, function $g : \mathbb{R}^3 \to \mathbb{R}$ on $[-1, 1]^3$ Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}.$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \text{ and } c = g(0, 0, 0) = 11.$

•
$$O_1 = \lfloor -\frac{1}{2}, \frac{1}{2} \rfloor$$
, $I_1 = 0$, $O_2 = \lfloor -3, 3 \rfloor$, $I_2 = \lfloor -1, 1 \rfloor$ and $O_3 = \lfloor -10, 10 \rfloor$, $I_3 = \lfloor -4, 4 \rfloor$.

Inner-approximation of $R_{\exists\forall\exists}(g)$ - round 1, Angel wins

$$\begin{bmatrix} c & +\underline{I}_1 & +\overline{O}_2 & +\underline{I}_3, & c & +\overline{I}_1 & +\underline{O}_2 & +\overline{I}_3 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & +3 & -4, & 11 & +0 & -3 & +4 \end{bmatrix} = \begin{bmatrix} 10, 12 \end{bmatrix}$$

An inner-approximation game

Example, function $g : \mathbb{R}^3 \to \mathbb{R}$ on $[-1, 1]^3$ Compute $R_{\exists \forall \exists}(g) = \{z \mid \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], z = g(x_1, x_2, x_3)\}.$

"Individual contributions" of each argument

•
$$\nabla_1 = |\frac{\partial g}{\partial x_1}| = |\frac{x_1}{2}| \in [0, \frac{1}{2}], \ \nabla_2 = |\frac{\partial g}{\partial x_2}| = |x_3 + 2| \in [1, 3],$$

 $\nabla_3 = |\frac{\partial g}{\partial x_3}| = |x_2 + 1 + 2(x_3 + 3)| \in [4, 10], \ \text{and} \ c = g(0, 0, 0) = 11.$
• $O_1 = [-\frac{1}{2}, \frac{1}{2}], \ I_1 = 0, \ O_2 = [-3, 3], \ I_2 = [-1, 1] \ \text{and} \ O_3 = [-10, 10], \ I_3 = [-4, 4].$

Inner-approximation of $R_{\exists\forall\exists}(g)$ - round 1, Angel wins

$$\begin{bmatrix} c & +\underline{I}_1 & +\overline{O}_2 & +\underline{I}_3, & c & +\overline{I}_1 & +\underline{O}_2 & +\overline{I}_3 \\ = \begin{bmatrix} 11 & 0 & +3 & -4, & 11 & +0 & -3 & +4 \end{bmatrix} = \begin{bmatrix} 10, 12 \end{bmatrix}$$

(in comparison, the sampling based estimation is [6.25, 16.25])

Step 3, quantified reachability for general functions

The problem with joint inner-approximations

A simple example

Consider $f = (f_1, f_2) : \mathbb{R}^4 \to \mathbb{R}^2$: $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ $f_2(x_1, x_2, x_3, x_4) = -1 - x_1 - x_2 + x_3 + 5x_4$ $R_{\exists \forall \exists}(f) = \{z \in \mathbb{R}^2 | \exists x_1 \in [-1, 1], \ \forall x_2 \in [-1, 1], \ \exists x_3 \in [-1, 1], \ \exists x_4 \in [-1, 1], \ z = f(x_1, x_2, x_3, x_4)\}$

Problem?

- Outer-approximation of each component ⇒ outer-approximation of R_{∃∀∃}(f): Same calculation as before, 1 component at a time: R_{∃∀∃}(f) ⊆ [-3,7] × [-7,5].
- Would find here as well $[-3,7] \times [-7,5] \subseteq R_{\exists \forall \exists}(f)$, wrong!

Reason: a witness for $\exists x_i \text{ may not be the same for each component of } f!$

A solution for joint inner-approximations

A simple relaxation

- Conjunction of quantified formulas for each component if no variable is existentially quantified in several components.
- Transform the quantified formula by strengthening them for that objective

For example (\forall as relaxations of \exists):

(for each *i*, $|\exists x_i|$ appears in only one component of *f*)

Example

Consider $f = (f_1, f_2) : \mathbb{R}^4 \to \mathbb{R}^2$:

$$\begin{array}{rcl} f_1(x_1,x_2,x_3,x_4) &=& 2+2x_1+x_2+3x_3+x_4\\ f_2(x_1,x_2,x_3,x_4) &=& -1-x_1-x_2+x_3+5x_4 \end{array}$$

$$egin{aligned} \mathcal{R}_{\existsorallet\exists}(f) &= \{z \in \mathbb{R}^2 | \exists x_1 \in [-1,1], \ orall x_2 \in [-1,1], \ \exists x_3 \in [-1,1], \ \exists x_4 \in [-1,1], \ z = f(x_1,x_2,x_3,x_4) \} \end{aligned}$$

Same calculation as before, 1 component at a time: $R_{\exists \forall \exists}(f) \subseteq [-3,7] \times [-7,5]$.

For the joint inner-approximation, interpret (we already did the first component!):

$$\begin{array}{c} \exists x_1, \ \forall x_2, \ \forall x_4, \ \exists x_3, \ z_1 = f_1(x_1, x_2, x_3, x_4) \\ \forall x_1, \ \forall x_2, \ \forall x_3, \ \exists x_4, \ z_2 = f_2(x_1, x_2, x_3, x_4) \end{array} \\ z_1 = \begin{bmatrix} z_1^c - \delta_{x_1} + \delta_{x_2} + \delta_{x_4} - \delta_{x_3}, z_1^c + \delta_{x_1} - \delta_{x_2} - \delta_{x_4} + \delta_{x_3} \end{bmatrix} \\ = \begin{bmatrix} 2 & -2 & +1 + 1 & -3, \ 2 & +2 & -1 - 1 & +3 \end{bmatrix} = \begin{bmatrix} -1, 5 \end{bmatrix}$$

Example

Consider $f = (f_1, f_2) : \mathbb{R}^4 \to \mathbb{R}^2$: $f_1(x_1, x_2, x_3, x_4) = 2 + 2x_1 + x_2 + 3x_3 + x_4$ $f_2(x_1, x_2, x_3, x_4) = -1 - x_1 - x_2 + x_3 + 5x_4$ $R_{\exists \forall \exists}(f) = \{z \in \mathbb{R}^2 | \exists x_1 \in [-1, 1], \forall x_2 \in [-1, 1], \exists x_3 \in [-1, 1], \exists x_4 \in [-1, 1], z = f(x_1, x_2, x_3, x_4)\}$

For the joint inner-approximation, interpret (2nd component):

$$\begin{array}{c} \boxed{\exists x_1}, \ \forall x_2, \ \forall x_4, \ \boxed{\exists x_3}, \ z_1 = f_1(x_1, x_2, x_3, x_4) \\ \\ \forall x_1, \ \forall x_2, \ \forall x_3, \ \boxed{\exists x_4}, \ z_2 = f_2(x_1, x_2, x_3, x_4) \end{array}$$

$$\begin{array}{c} z_2 = \begin{bmatrix} z_2^c + \delta_{x_1} + \delta_{x_2} + \delta_{x_4} - \delta_{x_3}, \ z_1^c - \delta_{x_1} - \delta_{x_2} - \delta_{x_4} + \delta_{x_3} \end{bmatrix} \\ = \begin{bmatrix} -1 & +1 + 1 + 1 & -5, \ -1 & -1 - 1 - 1 & +5 \end{bmatrix} = \begin{bmatrix} -3, 1 \end{bmatrix}$$

Hence $[-1,5] \times [-3,1] \subseteq R_{\exists \forall \exists}(f) \subseteq [-3,7] \times [-7,5].$

Eric Goubault, Sylvie Putot

Example, in picture

- Samples $z^0, ..., z^{15}$ of $f([-1, 1]^4)$
- Outer-approximation (our method)
- Exact set $R_{\exists \forall \exists}(f)$
- Inner-approximation (our method)

Applications to control systems

Application to control systems

Continuous time dynamical systems

- Contrarily to QE, method applicable directly on solutions of an ODE
- The inner and outer contributions, per variable *I_i* and *O_i* can be derived directly by guaranteed integration (e.g. Taylor models) on the corresponding variational ODE

Example

Dubbins vehicle

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array}\right) = \left(\begin{array}{c} vcos(\theta) + b_1 \\ vsin(\theta) \\ a \end{array}\right)$$

- Control period of t = 0.5, linear velocity v = 1,
- Initial conditions:

$$\mathbb{X}_0 = \{(x, y, \theta) \mid x \in [-0.1, 0.1], y \in [-0.1, 0.1], \theta \in [-0.01, 0.01]\}$$

- Control *a* (angular velocity) in $\mathbb{U} = [-0.01, 0.01]$,
- disturbance b_1 in $\mathbb{W} = [-0.01, 0.01]$

We want to estimate (robust reachability):

$$R_{\exists\forall\exists}(\varphi) = \{z \in \mathbb{R}^m \mid \exists u \in \mathbb{U}, \ \exists x_0 \in \mathbb{X}_0, \ \forall w \in \mathbb{W}, \ \exists s \in [0, T], \ z = \varphi(s; x_0, u, w)\}$$

Direct computation from the ODE (no need for Taylor approximant here)

- Outer-approximation of a "central trajectory" (x_c, y_c, θ_c) starting at x = 0, y = 0, $\theta = 0$, $b_1 = 0$ and a = 0: $x_c = t$, $y_c = 0$ and $\theta_c = 0$,
- $\frac{\partial x}{\partial t} = \cos(\theta) + b_1 \in [0.989999965, 1.01]$ hence $I_{x,t} = [0, 0.494999982]$, $O_{x,t} = [0, 0.505]$,
- Similarly for the other variables: $I_{y,t} = 0$, $O_{y,t} = [-sin(0.015)/2, sin(0.015)/2] = [-1.309 \ 10^{-4}, 1.309 \ 10^{-4}]$ and $I_{\theta,t} = 0$, $O_{\theta,t} = [-0.005, 0.005]$,
- The Jacobian of φ with respect to x_0 , y_0 , θ_0 , b_1 and a, satisfies a variational equation: E.g.:

$$\left(\frac{\partial x}{\partial x_0}\right) = -vsin(\theta)\frac{\partial \theta}{\partial x_0} + \frac{\partial b_1}{\partial x_0}$$

with $\frac{\partial x}{\partial x_0}(t=0) = 1$, $\frac{\partial \theta}{\partial x_0}(t=0) = 0$ etc.

Direct computation from the ODE (no need for Taylor approximant here)

- Outer-approximation of a "central trajectory" (x_c, y_c, θ_c) starting at $x = 0, y = 0, \theta = 0, b_1 = 0$ and a = 0: $x_c = t, y_c = 0$ and $\theta_c = 0$,
- $\frac{\partial x}{\partial t} = \cos(\theta) + b_1 \in [0.989999965, 1.01]$ hence $I_{x,t} = [0, 0.494999982]$, $O_{x,t} = [0, 0.505]$,
- Similarly for the other variables: $I_{y,t} = 0$, $O_{y,t} = [-sin(0.015)/2, sin(0.015)/2] = [-1.309 \ 10^{-4}, 1.309 \ 10^{-4}]$ and $I_{\theta,t} = 0$, $O_{\theta,t} = [-0.005, 0.005]$,
- The Jacobian of φ with respect to x_0 , y_0 , θ_0 , b_1 and a, satisfies a variational equation:

•
$$I_{x,a} = 0$$
, $O_{x,a} = [-6.545 \ 10^{-7}, 6.545 \ 10^{-7}]$, $I_{x,x_0} = O_{x,x_0} = [-0.1, 0.1]$, $I_{x,\theta_0} = 0$,
 $O_{x,\theta_0} = [-1.309 \ 10^{-6}, 1.309 \ 10^{-6}]$, $I_{x,b_1} = 0$, $O_{x,b_1} = [-0.005, 0.005]$,
• $I_{y,a} = 0$, $O_{y,a} = [-0,0025, 0.0025]$, $I_{y,y_0} = O_{y,y_0} = [-0.1, 0.1]$, $I_{y,\theta_0} = 0$,
 $O_{y,\theta_0} = [-0,005, 0.005]$,
• $I_{\theta,\theta_0} = O_{\theta,\theta_0} = [-0.01, 0.01]$, $I_{\theta,a} = 0$, $O_{\theta,a} = [0, 0.005]$,

Compute $R_{\exists \forall \exists}$:

$$egin{aligned} \exists a \in [-0.01, 0.01], \ \exists x_0 \in [-0.1, 0.1], \ \exists y_0 \in [-0.1, 0.1], \ \exists heta_0 \in [-0.01, 0.01], \ \forall b_1 \in [-0.01, 0.01], \ \exists t \in [0, 0.5], \ &z = arphi(t; x_0, y_0, heta_0, a, b_1) \end{aligned}$$

Hence, inner-approximation

Lower bound inner-approximation for x:

$$\begin{array}{cccc} x_{c} & +\underline{I}_{x,a} + \underline{I}_{x,x_{0}} & +\underline{I}_{x,y_{0}} & +\underline{I}_{x,\theta_{0}} & +\overline{O}_{x,b_{1}} & +\underline{I}_{x,t} \\ = 0 & -0 & -0.1 & +0 & -0 & +0.005 & +0 \end{array}$$

which is equal to -0.095, and its upper bound:

$$\begin{array}{cccc} x_c & +\bar{I}_{x,a} & +\bar{I}_{x,x_0} & +\bar{I}_{x,y_0} & +\bar{I}_{x,\theta_0} & +\underline{O}_{x,b_1} & +\bar{I}_{x,t} \\ 0 & +0 & +0.1 & +0 & +0 & -0.005 & +0.494999982 \end{array}$$

which is equal to 0.589999982. Therefore the inner-approximation for x is equal to [-0.095, 0.589999982].

Eric Goubault, Sylvie Putot

Compute $R_{\exists \forall \exists}$:

$$egin{aligned} \exists a \in [-0.01, 0.01], \ \exists x_0 \in [-0.1, 0.1], \ \exists y_0 \in [-0.1, 0.1], \ \exists heta_0 \in [-0.01, 0.01], \ \forall b_1 \in [-0.01, 0.01], \ \exists t \in [0, 0.5], \ &z = arphi(t; x_0, y_0, heta_0, a, b_1) \end{aligned}$$

Hence, outer-approximation

Lower bound outer-approximation for the x:

which is equal to -0.1000019635, and its upper bound:

$$\begin{array}{cccc} x_{c} & +\overline{O}_{x,a} & +\overline{O}_{x,x_{0}} & +\overline{O}_{x,y_{0}} & +\overline{O}_{x,\theta_{0}} & +\underline{I}_{x,b_{1}} & +\overline{O}_{x,t} \\ = 0 & +6.545 & 10^{-7} & +0.1 & 0 & +1.309 & 10^{-6} & -0 & +0.505 \end{array}$$

which is equal to 0.6050019635. Therefore the outer-approximation for x is equal to [-0.1000019635, 0.6050019635].

Eric Goubault, Sylvie Putot

Compute $R_{\exists \forall \exists}$:

$$egin{aligned} \exists a \in [-0.01, 0.01], \ \exists x_0 \in [-0.1, 0.1], \ \exists y_0 \in [-0.1, 0.1], \ \exists heta_0 \in [-0.01, 0.01], \ \forall b_1 \in [-0.01, 0.01], \ \exists t \in [0, 0.5], \ &z = arphi(t; x_0, y_0, heta_0, m{a}, b_1) \end{aligned}$$

And...

- for y the inner-approximation [-0.1, 0.1] and over-approximation [-0.1076309, 0.1076309],
- and for θ the inner-approximation [-0.01, 0.01] and over-approximation [-0.02, 0.02].

Very close to results obtained by quantifier elimination (Mathematica), here with a much smaller complexity.

Last application: Dubbins!

Space relaxation

$$\begin{split} R_{\exists\forall\exists}(\varphi) &= \{(x,y,\theta) \mid \exists a \in [-0.01, 0.01], \ \exists x_0 \in [-0.1, 0.1], \\ \exists y_0 \in [-0.1, 0.1], \ \exists \theta_0 \in [-0.01, 0.01], \ \forall b_1 \in [-0.01, 0.01], \\ \exists t \in [0, 0.5], \ \exists \delta_2 \in [-1.309 \ 10^{-4}, 1.309 \ 10^{-4}], \ \exists \delta_3 \in [-0.005, 0.005], \\ (x, y, \theta) &= \varphi(t; x_0, y_0, \theta_0, a, b_1) + (0, \delta_2, \delta_3) \} \end{split}$$

Outer-approximation

 $extsf{R}_{\exists orall \exists}(arphi) \subseteq [-0.1000019635, 0.6050019635] imes$

 $[0.1077618, 0.1077618] \times [-0.025, 0.025]$

Last application: Dubbins!

$$\begin{split} \mathcal{R}_{\exists \forall \exists}(\varphi) &= \{(x, y, \theta) \mid \exists a \in [-0.01, 0.01], \ \exists x_0 \in [-0.1, 0.1], \\ \exists y_0 \in [-0.1, 0.1], \ \exists \theta_0 \in [-0.01, 0.01], \ \forall b_1 \in [-0.01, 0.01], \\ \exists t \in [0, 0.5], \ \exists \delta_2 \in [-1.309 \ 10^{-4}, 1.309 \ 10^{-4}], \ \exists \delta_3 \in [-0.005, 0.005], \\ &(x, y, \theta) = \varphi(t; x_0, y_0, \theta_0, a, b_1) + (0, \delta_2, \delta_3) \} \end{split}$$

For the inner-approximation, interpret:

$$\begin{aligned} \forall \mathbf{a}, \ \forall \mathbf{y}_0, \forall \theta_0, \ \exists \mathbf{x}_0, \ \forall \mathbf{b}_1, \ \forall \delta_2, \ \forall \delta_3, \ \exists \mathbf{t}, \ \mathbf{x} = \varphi_{\mathbf{x}}(\mathbf{t}; \mathbf{x}_0, \mathbf{y}_0, \theta_0, \mathbf{a}, \mathbf{b}_1) \\ \forall \mathbf{a}, \ \forall \mathbf{x}_0, \forall \theta_0, \ \exists \mathbf{y}_0, \ \forall \mathbf{b}_1, \ \forall \delta_3, \ \forall \mathbf{t}, \ \exists \delta_2, \ \mathbf{y} = \varphi_{\mathbf{y}}(\mathbf{t}; \mathbf{x}_0, \mathbf{y}_0, \theta_0, \mathbf{a}, \mathbf{b}_1) + \delta_2 \\ \forall \mathbf{x}_0, \ \forall \mathbf{y}_0, \ \exists \theta_0, \ \exists \mathbf{a}, \ \forall \mathbf{b}_1, \ \forall \delta_2, \ \forall \mathbf{t}, \ \exists \delta_3, \ \theta = \varphi_{\theta}(\mathbf{t}; \mathbf{x}_0, \mathbf{y}_0, \theta_0, \mathbf{a}, \mathbf{b}_1) + \delta_3 \end{aligned}$$

 $[-0.0949993455, 0.5899993275] \times [-0.0925, 0.0925] \times [-0.01, 0.01] \subseteq R_{\exists \forall \exists}(\varphi)$ (timeout using quantifier elimination under Mathematica)

Eric Goubault, Sylvie Putot

Quantified reachability

To conclude

Implementation

In Julia, using the packages LazySets for manipulating boxes (Hyperrectangles) and Symbolics for automatic differentiation.

Performances

- Benchmarks on a Macbook Pro 2.3GHz Intel core i9 with 8 cores, measuring timings using the Benchmark Julia package.
- On a variety of problems up to 2000 variables in the linear case, 104 variables in the non-linear case, shows excellent performance (and QE cannot solve some of the problems with more than 10 variables even in a very long time)

More in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

Thanks!

More developments soon

with approximations of full $\mathsf{QE}/\mathsf{quantified}$ constrained solving, and higher-order set-based methods

Any questions?

{eric.goubault,sylvie.putot}@polytechnique.edu