

Quantified reachability problems?

Sets of reachable states
For discrete or continuous systems φ (control u, perturbations w, initial states x_{0})

Reachability under uncertainties
Maximal reachability: set of states z (maximally) reachable at time s :

$$
\left\{z \mid \exists x_{0} \in Z_{0}, \exists u:[0, s] \rightarrow \mathbb{U}, \exists w \in[0, s] \rightarrow \mathbb{W} \text { s.t. } \varphi\left(s ; x_{0}, u, w\right)=z\right\}
$$

Quantified reachability problems?

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_{0}), intractable in general: need for outer-approximations

Reachability under uncertainties
Maximal reachability: set of states z (maximally) reachable at time s :

$$
\left\{z \mid \exists x_{0} \in Z_{0}, \exists u:[0, s] \rightarrow \mathbb{U}, \exists w \in[0, s] \rightarrow \mathbb{W} \text { s.t. } \varphi\left(s ; x_{0}, u, w\right)=z\right\}
$$

Quantified reachability problems?

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_{0}), intractable in general: need for inner and outer-approximations

Reachability under uncertainties
Maximal reachability: set of states z (maximally) reachable at time s :

$$
\left\{z \mid \exists x_{0} \in Z_{0}, \exists u:[0, s] \rightarrow \mathbb{U}, \exists w \in[0, s] \rightarrow \mathbb{W} \text { s.t. } \varphi\left(s ; x_{0}, u, w\right)=z\right\}
$$

Quantified reachability problems?

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_{0}), intractable in general: need for inner and outer-approximations

Reachability under uncertainties
Minimal reachability: set of states z (minimally) reachable at time s :

$$
\left\{z \mid \forall u:[0, s] \rightarrow \mathbb{U}, \forall w \in[0, s] \rightarrow \mathbb{W}, \exists x_{0} \in \boldsymbol{Z}_{0} \text { s.t. } \varphi\left(s ; x_{0}, u, w\right)=z\right\}
$$

Quantified reachability problems?

Sets of reachable states

For discrete or continuous systems φ (control u, perturbations w, initial states x_{0}), intractable in general: need for inner and outer-approximations

Reachability under uncertainties
Or "robust reachability" (E. Goubault, S. Putot: Inner and outer reachability for the verification of control systems. HSCC 2019):

$$
\left\{z \mid \forall w \in[0, s] \rightarrow \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, \exists u:[0, s] \rightarrow \mathbb{U}, \varphi\left(s ; x_{0}, u, w\right)=z\right\}
$$

Quantified reachability problems?

Classical reachability (inner and outer approximations)

"Robust reachability" (HSCC 2019):

$$
\begin{aligned}
& \left\{z \mid \forall w \in[0, s] \rightarrow \mathbb{W}, \exists x_{0} \in \mathbb{X} 0,\right. \\
& \left.\exists u:[0, s] \rightarrow \mathbb{U}, z=\varphi\left(t ; x_{0}, u, w\right)\right\}
\end{aligned}
$$

This presentation: add more quantifiers!
Why? Wait for next slide!

This presentation is part of a larger programme

- Fast and precise set-based methods for guaranteed inner/outer approximations of Quantifier Elimination (QE, or Quantified Constraint Solving)
- We focus here on simple Oth-order (interval based) approximations of QE, useful for "general reachability" problems

More, or different alternations of quantifiers?

Reminder: robust reachability of HSCC 2019
Given $\varphi\left(t ; x_{0}, u, w\right)$ the flow of an ODE at time t from x_{0} with control u and disturbance w, for time $t \in[0, T]$, compute:

$$
R_{\forall \exists}(\varphi)(t)=\left\{z \quad \mid \forall w \in[0, s] \rightarrow \mathbb{W}, \exists x_{0} \in \mathbb{X}_{0}, \exists u \in[0, s] \rightarrow \mathbb{U}, z=\varphi\left(t ; x_{0}, u, w\right)\right\}
$$

(can a controller compensate disturbances or change of values of parameters that are known to the controller?)

Alternative problem (control is not aware of perturbations)
Can a controller not knowing the disturbance still reach the target, up to some (time) relaxation?

$$
\begin{aligned}
R_{\exists \exists \exists}(\varphi)=\left\{z \in \mathbb{R}^{m} \mid \exists u \in[0, s] \rightarrow \mathbb{U}, \exists x_{0} \in \mathbb{X}_{0}, \forall\right. & \forall \\
& \in[0, s] \rightarrow \mathbb{W} \\
& \left.\exists s \in[0, T], z=\varphi\left(s ; x_{0}, u, w\right)\right\}
\end{aligned}
$$

But also

Motion planning

- Find possible waypoints and final state, for a controller that takes k constrained actions
- Gives k alternations of $\forall \exists$ quantifiers, for k waypoints

General temporal logics formulas, and hyperproperties

- behavioral robustness,
- comparisons of controllers

Etc.

Problem statement

General quantified problems

For $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ (e.g. flow function etc.), generally supposed continuously differentiable, consider alternations of quantifiers \forall / \exists reachability problem:

$$
\begin{aligned}
R_{\boldsymbol{p}}(f)=\{ & \left\{z \in \mathbb{R}^{m} \mid Q_{1} x_{1} \in[-1,1], Q_{2} x_{2} \in[-1,1], \ldots,\right. \\
& \left.Q_{p-1} x_{p-1} \in[-1,1], Q_{p} x_{p} \in[-1,1], z=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}
\end{aligned}
$$

where $Q_{i}=\forall$ or $Q_{i}=\exists$.

Discussed in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

- Up to reparametrization, quantified problems with other boxes than $[-1,1]^{j_{i}}$
- Also possible to consider more general sets over which to quantify variables x_{i} by suitable outer and inner approximations as boxes
- Can consider e.g. control u and disturbance w as piecewise constant signals over a bounded time horizon.

Steps of the construction

Step 1: The case of linear scalar functions $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Exact solution via a basic two-player game

Steps of the construction

Step 1: The case of linear scalar functions $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Exact solution via a basic two-player game

Step 2: The case on non-linear scalar functions $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Use suitable inner and outer approximate linearizations

Steps of the construction

Step 1: The case of linear scalar functions $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Exact solution via a basic two-player game

Step 2: The case on non-linear scalar functions $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Use suitable inner and outer approximate linearizations

Step 3: The general case, non-linear functions $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$
Use relaxations of quantified formulas involved at different components of f

Step 1, quantified reachability for scalar linear functions

Let us play a simple two-player game!
f is the affine function $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\ldots+\delta_{p} x_{p}$; variables x_{i} are either quantified by Q_{i} being \exists or by \forall.

The players

(\exists-player)

Let us play a simple two-player game!
f is the affine function $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\ldots+\delta_{p} x_{p}$; variables x_{i} are either quantified by Q_{i} being \exists or by \forall.

The rules of the game
Compute $S=[\underline{S}, \bar{S}]$, the quantified reachable interval; initially $S=\{f(0, \ldots, 0)\}$

Let us play a simple two-player game!
f is the affine function $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\ldots+\delta_{p} x_{p}$; variables x_{i} are either quantified by Q_{i} being \exists or by \forall.

The rules of the game
Compute $S=[\underline{S}, \bar{S}]$, the quantified reachable interval; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 , plays if $Q_{i}=\exists$, plays if $Q_{i}=\forall$

Let us play a simple two-player game!
f is the affine function $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\ldots+\delta_{p} x_{p}$; variables x_{i} are either quantified by Q_{i} being \exists or by \forall.

The rules of the game
Compute $S=[\underline{S}, \bar{S}]$, the quantified reachable interval; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 plays if $Q_{i}=\exists$ plays if $Q_{i}=\forall$
- widens S by $\left[-\delta_{i}, \delta_{i}\right]\left(\underline{S}-=\delta_{i}, \bar{S}+=\delta_{i}\right)$

Let us play a simple two-player game!
f is the affine function $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\ldots+\delta_{p} x_{p}$; variables x_{i} are either quantified by Q_{i} being \exists or by \forall.

The rules of the game
Compute $S=[\underline{S}, \bar{S}]$, the quantified reachable interval; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 , plays if $Q_{i}=\exists$, plays if $Q_{i}=\forall$
- widens S by $\left[-\delta_{i}, \delta_{i}\right]\left(\underline{S}-=\delta_{i}, \bar{S}+=\delta_{i}\right)$
- ${\text { shrinks } S \text { by }\left[-\delta_{i}, \delta_{i}\right]\left(\underline{S}+=\delta_{i}, \bar{S}-=\delta_{i}\right) ~}_{\text {a }}$

Let us play a simple two-player game!
f is the affine function $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\ldots+\delta_{p} x_{p}$; variables x_{i} are either quantified by Q_{i} being \exists or by \forall.

The rules of the game
Compute $S=[\underline{S}, \bar{S}]$, the quantified reachable interval; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 , plays if $Q_{i}=\exists, \Omega$ plays if $Q_{i}=\forall$
- widens S by $\left[-\delta_{i}, \delta_{i}\right]\left(\underline{S}-=\delta_{i}, \bar{S}+=\delta_{i}\right)$
- 出 shrinks S by $\left[-\delta_{i}, \delta_{i}\right]\left(\underline{S}+=\delta_{i}, \bar{S}-=\delta_{i}\right)$
- Stops either after step $i=1$, wins or $S=\emptyset$ and I wins

A game where the angel wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$:
$f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ and compute:

$$
R_{\exists \forall \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \forall x_{4} \in[-1,1],\right.
$$

$$
\left.\exists x_{3} \in[-1,1], z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
$$

Let's play! - round $i=p=4$

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{ccc}
z_{1}^{c} & -\delta_{x_{3}}, z_{1}^{c} & +\delta_{x_{3}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & -3, & 2
\end{array}\right]
\end{aligned}
$$

where $z_{1}^{c}=f(0,0,0,0)=2$

A game where the angel wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$:
$f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ and compute:

$$
\begin{aligned}
R_{\exists \forall \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \forall \\
\forall & x_{4} \in[-1,1] \\
& \left.\exists x_{3} \in[-1,1], z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

Let's play! - round $i=3$

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{ccccc}
z_{1}^{c} & +\delta_{x_{4}}-\delta_{x_{3}}, z_{1}^{c} & -\delta_{x_{4}}+\delta_{x_{3}}
\end{array}\right] \\
& =\left[\begin{array}{rllll}
2 & +1 & -3, & 2 & -1
\end{array}\right]
\end{aligned}
$$

Angel wins $1-3<-1+3$!

A game where the angel wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$:
$f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ and compute:

$$
\begin{aligned}
R_{\exists \exists \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \forall x_{4}
\end{aligned} \quad\left[\begin{array}{l}
{[-1,1]} \\
\exists
\end{array}\right)
$$

Let's play! - round $i=2$

$$
\begin{aligned}
& \text { Q世 }
\end{aligned}
$$

Angel still wins $1+1-3<-1-1+3$!

A game where the angel wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$:
$f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ and compute:

$$
\begin{aligned}
R_{\exists \exists \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \forall x_{4} \in[-1,1] \\
\exists & \\
\exists x_{3} & \left.\in[-1,1], z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

Let's play! - round $i=1$

$$
\begin{aligned}
& \text { 緤 } \\
& z_{1}=\left[z_{1}^{c}-\delta_{x_{1}}+\delta_{x_{2}}+\delta_{x_{4}}-\delta_{x_{3}}, z_{1}^{c}+\delta_{x_{1}}-\delta_{x_{2}}-\delta_{x_{4}}+\delta_{x_{3}}\right] \\
& =\left[\begin{array}{llllllllll}
2 & -2 & +1 & +1 & -3, & 2 & +2 & -1 & -1 & +3
\end{array}\right]=\left[\begin{array}{lll}
-1,5
\end{array}\right]
\end{aligned}
$$

Final win from the angel side: $-2+1+1-3<2-1-1+3$!

Slightly changing the game so that the devil wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ again - exchanging the roles of x_{3} and x_{4} : $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ but now compute:

$$
\begin{aligned}
& R_{\exists \exists \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. \forall x_{3} \in[-1,1] \\
& \exists \\
&\left.\exists x_{4} \in[-1,1], z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

Let's play! - round $i=m=4$

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{ccc}
z_{1}^{c} & -\delta_{x_{4}}, z_{1}^{c} & +\delta_{x_{4}}
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 & -1, & 2
\end{array}+1\right]
\end{aligned}
$$

where $z_{1}^{c}=f(0,0,0,0)=2$

Slightly changing the game so that the devil wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ again - exchanging the roles of x_{3} and x_{4} : $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ but now compute:

$$
\begin{aligned}
R_{\exists \exists \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \forall x_{3} \in[-1,1] \\
& \left.\exists x_{4} \in[-1,1], z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

Let's play! - round $i=3$

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{ccccc}
z_{1}^{c} & +\delta_{x_{3}}-\delta_{x_{4}}, z_{1}^{c} & -\delta_{x_{3}}+\delta_{x_{4}}
\end{array}\right] \\
& =\left[\begin{array}{rllll}
2 & +3 & -1, & 2 & -3 \\
z_{2}
\end{array}\right]
\end{aligned}
$$

Demon wins $3-1>-3+1$ and $S=\emptyset$!

Slightly changing the game so that the devil wins

Consider $f=f_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ again - exchanging the roles of x_{3} and x_{4} :
$f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4}$ but now compute:

$$
\begin{aligned}
R_{\exists \exists \exists}(f)=\left\{z_{1} \in \mathbb{R} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \forall
\end{aligned} \begin{aligned}
& x_{3} \in[-1,1] \\
& \left.\exists x_{4} \in[-1,1], z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

Let's play! - round $i=3$

Demon wins $3-1>-3+1$ and $S=\emptyset!$
The general formula, and its proof, in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

Step 2, quantified reachability for scalar non-linear functions

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem for $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$
Suppose we can bound partial derivatives of f by $\nabla_{j}=\left[\underline{\nabla}_{j}, \bar{\nabla}_{j}\right](i=1, \ldots, p)$:

$$
\left\{\left.\left|\frac{\partial f}{\partial x_{j}}\left(x_{1}, \ldots, x_{i}, 0, \ldots, 0\right)\right| \right\rvert\, x_{l} \in[-1,1], I=1, \ldots, i\right\} \subseteq \nabla_{j}
$$

Then:
Writing inner and outer contributions: $\boldsymbol{I}_{i}=\underline{\nabla}_{j}[-1,1], O_{j}=\bar{\nabla}_{j}[-1,1], j=1, \ldots, p$ we get inner and outer-approximations of f :

$$
f(0, \ldots, 0)+\sum_{i=1}^{p} I_{i} \subseteq f\left([-1,1]^{p}\right) \subseteq f(0, \ldots, 0)+\sum_{i=1}^{p} O_{i}
$$

See e.g. A. Goldsztejn. 2012. Modal Intervals Revisited, Part 2: A Generalized Interval Mean Value Extension. Reliable Computing 2012) and E. Goubault, S. Putot: Inner and outer reachability for the verification of control systems. HSCC 2019

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem

Then:
Writing inner and outer contributions: $\boldsymbol{I}_{i}=\underline{\nabla}_{j}[-1,1], O_{j}=\bar{\nabla}_{j}[-1,1], j=1, \ldots, p$ we get inner and outer-approximations of f :

$$
f(0, \ldots, 0)+\sum_{i=1}^{p} I_{i} \subseteq f\left([-1,1]^{p}\right) \subseteq f(0, \ldots, 0)+\sum_{i=1}^{p} O_{i}
$$

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem

Then:
Writing inner and outer contributions: $\boldsymbol{I}_{i}=\underline{\nabla}_{j}[-1,1], O_{j}=\bar{\nabla}_{j}[-1,1], j=1, \ldots, p$ we get inner and outer-approximations of f :

$$
f(0, \ldots, 0)+\sum_{i=1}^{p} I_{i} \subseteq f\left([-1,1]^{p}\right) \subseteq f(0, \ldots, 0)+\sum_{i=1}^{p} O_{i}
$$

(other approximation methods, higher-order in particular, see e.g. Eric Goubault Sylvie Putot, "Tractable higher-order under-approximating AE extensions for non-linear systems" ADHS 2021)

Example of inner-outer approximation by generalized mean value theorem

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute inner and outer approximation of the range of g, i.e. of $R_{\exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \exists x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$

Individual contributions of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Inner and outer-approximations

$$
g(0, \ldots, 0)+\sum_{i=1}^{p} I_{i} \subseteq g\left([-1,1]^{p}\right) \subseteq g(0, \ldots, 0)+\sum_{i=1}^{p} O_{i}
$$

Example of inner-outer approximation by generalized mean value theorem

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute inner and outer approximation of the range of g, i.e. of $R_{\exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \exists x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$

Individual contributions of each argument

$$
\begin{aligned}
& \text { - } \nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3] \text {, } \\
& \nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10] \text {, and } c=g(0,0,0)=11 \text {. } \\
& \text { - } O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1] \text { and } O_{3}=[-10,10], I_{3}=[-4,4] \text {. }
\end{aligned}
$$

Inner and outer-approximations

$$
11+[-0,0]+[-1,1]+[-4,4] \subseteq g\left([-1,1]^{p}\right) \subseteq 11+\left[-\frac{1}{2}, \frac{1}{2}\right]+[-3,3]+[-10,10]
$$

Example of inner-outer approximation by generalized mean value theorem

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute inner and outer approximation of the range of g, i.e. of $R_{\exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \exists x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$

Individual contributions of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Inner and outer-approximations

$$
[6,16] \subseteq g\left([-1,1]^{p}\right) \subseteq[-2.5,24.5]
$$

(real range [4.25, 22.25])

Let us play a slightly more involved two-player game!
f is the non-linear function with I_{i} and O_{j} for each variable x_{i}, either quantified by Q_{i} being \exists or by \forall.

The players, again!

(\forall-player)

Let us play a slightly more involved two-player game!
f is the non-linear function with I_{i} and O_{j} for each variable x_{i}, either quantified by Q_{i} being \exists or by \forall.

The rules of the outer-approximation game
Compute $S=[\underline{S}, \bar{S}]$, interval outer-approximating the quantified reachable set; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 , plays if $Q_{i}=\exists$, plays if $Q_{i}=\forall$
widens S by the maximal contribution $O_{i}\left(\underline{S}-=\underline{O}_{i}, \bar{S}+=\bar{O}_{i}\right)$

shrink S by the minimal contribution $I_{i}\left(\underline{S}+=\underline{I}_{i}, \bar{S}-=\bar{I}_{i}\right)$

- Stops either after step $i=1$, wins or $S=\emptyset$ and J wins

Let us play a slightly more involved two-player game!
f is the non-linear function with I_{i} and O_{j} for each variable x_{i}, either quantified by Q_{i} being \exists or by \forall.

The rules of the inner-approximation game
Compute $S=[\underline{S}, \bar{S}]$, interval inner-approximating the quantified reachable set; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 , plays if $Q_{i}=\exists, J$ plays if $Q_{i}=\forall$
- widens S by the minimal contribution $I_{i}\left(\underline{S}-=\underline{I}_{i}, \bar{S}+=\bar{I}_{i}\right)$
 shrink S by the maximal contribution $O_{i}\left(\underline{S}+=\underline{O}_{i}, \bar{S}-=\bar{O}_{i}\right)$
- Stops either after step $i=1$, wins or $S=\emptyset$ and wins

Let us play a slightly more involved two-player game!
f is the non-linear function with I_{i} and O_{j} for each variable x_{i}, either quantified by Q_{i} being \exists or by \forall.

The rules of the inner-approximation game
Compute $S=[\underline{S}, \bar{S}]$, interval inner-approximating the quantified reachable set; initially $S=\{f(0, \ldots, 0)\}$

- At round i from p to 1 , plays if $Q_{i}=\exists$, plays if $Q_{i}=\forall$
- widens S by the minimal contribution $I_{i}\left(\underline{S}-=\underline{I}_{i}, \bar{S}+=\bar{I}_{i}\right)$

shrink S by the maximal contribution $O_{i}\left(\underline{S}+=\underline{O}_{i}, \bar{S}-=\bar{O}_{i}\right)$

- Stops either after step $i=1$ wins or $S=\emptyset$ and $\sqrt{ }$ wins

Formalized theorem and proof in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

An outer-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$
"Individual contributions" of each argument

$$
\begin{aligned}
-\nabla_{1} & =\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3] \\
\nabla_{3} & =\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10], \text { and } c=g(0,0,0)=11 . \\
O_{1} & =\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1] \text { and } O_{3}=[-10,10], I_{3}=[-4,4] .
\end{aligned}
$$

Outer-approximation of $R_{\exists \exists \exists}(g)$ - round 3

$$
\left.\begin{array}{cccc}
{\left[\begin{array}{ccc}
c & +\underline{O}_{3}, & c \\
{\left[\begin{array}{cc}
+\bar{O}_{3}
\end{array}\right]} \\
11 & -10, & 11
\end{array}\right.} & +10
\end{array}\right]
$$

An outer-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$
"Individual contributions" of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Outer-approximation of $R_{\exists \exists \exists}(g)$ - round 2

$$
\left.\begin{array}{lllll}
6 \psi & & & \\
\text { git } & & & \\
+\bar{I}_{2} & +\underline{O}_{3}, & c & +\underline{I}_{2} & +\bar{O}_{3} \\
+1 & -10, & 11 & -1 & +10
\end{array}\right]
$$

An outer-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$
"Individual contributions" of each argument

$$
\begin{aligned}
-\nabla_{1} & =\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3] \\
\nabla_{3} & =\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10], \text { and } c=g(0,0,0)=11 . \\
O_{1} & =\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1] \text { and } O_{3}=[-10,10], I_{3}=[-4,4] .
\end{aligned}
$$

Outer-approximation of $R_{\exists \exists \exists}(g)$ - round 1, Angel wins

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccccccc}
c & \underline{O}_{1} & +\bar{I}_{2} & +\underline{O}_{3}, & c & +\bar{O}_{1} & +\underline{I}_{2} \\
=\left[\begin{array}{ccccc}
2 & +\bar{O}_{3}
\end{array}\right] \\
11 & -\frac{1}{2} & +1 & -10, & 11 & +\frac{1}{2} & -1
\end{array}+10\right.}
\end{array}\right]=[1.5,20.5]
$$

An outer-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}}{4}+\left(x_{2}+1\right)\left(x_{3}+2\right)+\left(x_{3}+3\right)^{2} .
$$

Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$
"Individual contributions" of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Outer-approximation of $R_{\exists \exists \exists}(g)$ - round 1, Angel wins

$$
\begin{aligned}
& \text { 曷 } \\
& =\left[\begin{array}{cccccccc}
c & +\underline{O}_{1} & +\bar{I}_{2} & +\underline{O}_{3}, & c & +\bar{O}_{1} & +\underline{I}_{2} & +\bar{O}_{3} \\
11 & -\frac{1}{2} & +1 & -10, & 11 & +\frac{1}{2} & -1 & +10
\end{array}\right]=[1.5,20.5]
\end{aligned}
$$

(in comparison, the sampling based estimation is [6.25, 16.25])

An inner-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$
Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$.
"Individual contributions" of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Inner-approximation of $R_{\exists \exists \exists}(g)$ - round 3

$$
=\left[\begin{array}{cccc}
c & +I_{3}, & c & +\bar{I}_{3} \\
=[11 & -4, & 11 & +4
\end{array}\right]
$$

An inner-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$
Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$.
"Individual contributions" of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Inner-approximation of $R_{\exists \exists \exists}(g)$ - round 2

$$
\begin{aligned}
& \text { \% } \\
& =\left[\begin{array}{cccccc}
c & +\bar{O}_{2} & +\underline{I}_{3}, & c & +\underline{O}_{2} & +\bar{I}_{3}
\end{array}\right]
\end{aligned}
$$

An inner-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$
Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$.
"Individual contributions" of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$, $\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Inner-approximation of $R_{\exists \exists \exists}(g)$ - round 1, Angel wins

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccccccc}
c & & & \\
c & +\underline{I}_{1} & +\bar{O}_{2} & +\underline{I}_{3} & c & +\bar{I}_{1} & +\underline{O}_{2} \\
11 & 0 & +3 & -4, & 11 & +0 & -3 \\
\hline
\end{array}\right]}
\end{array}\right]=[10,12]
$$

An inner-approximation game

Example, function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ on $[-1,1]^{3}$
Compute $R_{\exists \forall \exists}(g)=\left\{z \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1], z=g\left(x_{1}, x_{2}, x_{3}\right)\right\}$.
"Individual contributions" of each argument

- $\nabla_{1}=\left|\frac{\partial g}{\partial x_{1}}\right|=\left|\frac{x_{1}}{2}\right| \in\left[0, \frac{1}{2}\right], \nabla_{2}=\left|\frac{\partial g}{\partial x_{2}}\right|=\left|x_{3}+2\right| \in[1,3]$,
$\nabla_{3}=\left|\frac{\partial g}{\partial x_{3}}\right|=\left|x_{2}+1+2\left(x_{3}+3\right)\right| \in[4,10]$, and $c=g(0,0,0)=11$.
- $O_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right], I_{1}=0, O_{2}=[-3,3], I_{2}=[-1,1]$ and $O_{3}=[-10,10], I_{3}=[-4,4]$.

Inner-approximation of $R_{\exists \forall \exists}(g)$ - round 1, Angel wins

$$
\begin{aligned}
& 8 \\
& {\left[\begin{array}{ccccccc}
c & \underline{I}_{1} & +\bar{O}_{2} & +\underline{I}_{3}, & c & +\bar{I}_{1} & +\underline{O}_{2} \\
{\left[\begin{array}{cccccc}
3
\end{array}\right]} \\
11 & 0 & +3 & -4, & 11 & +0 & -3 \\
\hline
\end{array}\right]=[10,12]}
\end{aligned}
$$

(in comparison, the sampling based estimation is [6.25, 16.25])

Step 3, quantified reachability for general functions

The problem with joint inner-approximations

A simple example
Consider $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$:

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =2+2 x_{1}+x_{2}+3 x_{3}+x_{4} \\
f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =-1-x_{1}-x_{2}+x_{3}+5 x_{4} \\
R_{\exists \forall \exists}(f)=\left\{z \in \mathbb{R}^{2} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \exists x_{3} \in[-1,1], \\
& \left.\exists x_{4} \in[-1,1], z=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

Problem?

- Outer-approximation of each component \Rightarrow outer-approximation of $R_{\exists \exists \exists}(f)$: Same calculation as before, 1 component at a time: $R_{\exists \exists \exists}(f) \subseteq[-3,7] \times[-7,5]$.
- Would find here as well $[-3,7] \times[-7,5] \subseteq R_{\exists \exists \exists}(f)$, wrong!

Reason: a witness for $\exists x_{i}$ may not be the same for each component of f !

A solution for joint inner-approximations

A simple relaxation

- Conjunction of quantified formulas for each component if no variable is existentially quantified in several components.
- Transform the quantified formula by strengthening them for that objective

For example ($\underline{\forall}$ as relaxations of \exists):

$$
\begin{aligned}
& \exists x_{1}, \forall x_{2}, \underline{\forall} x_{4}, \quad \exists x_{3}, \quad z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \forall x_{1}, \forall x_{2}, \underline{\forall} x_{3}, \quad \exists x_{4}, z_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

(for each $i, \boxed{\exists x_{i}}$ appears in only one component of f)

Example

Consider $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2+2 x_{1}+x_{2}+3 x_{3}+x_{4} \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-1-x_{1}-x_{2}+x_{3}+5 x_{4}
\end{aligned}
$$

$$
R_{\exists \forall \exists}(f)=\left\{z \in \mathbb{R}^{2} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1], \exists x_{3} \in[-1,1]\right.
$$

$$
\left.\exists x_{4} \in[-1,1], z=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
$$

Same calculation as before, 1 component at a time: $R_{\exists \exists \exists}(f) \subseteq[-3,7] \times[-7,5]$.

For the joint inner-approximation, interpret (we already did the first component!):

$$
\begin{aligned}
& \exists x_{1}, \forall x_{2}, \forall x_{4}, \exists x_{3}, z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \forall x_{1}, \forall x_{2}, \forall x_{3}, \exists x_{4}, z_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& z_{1}=\left[z_{1}^{c}-\delta_{x_{1}}+\delta_{x_{2}}+\delta_{x_{4}}-\delta_{x_{3}}, z_{1}^{c}+\delta_{x_{1}}-\delta_{x_{2}}-\delta_{x_{4}}+\delta_{x_{3}}\right] \\
& =\left[\begin{array}{lllllll}
2 & -2 & +1+1 & -3, & 2 & +2 & -1-1
\end{array}+3\right]=\left[\begin{array}{ll}
-1,5
\end{array}\right]
\end{aligned}
$$

Example

Consider $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$:

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =2+2 x_{1}+x_{2}+3 x_{3}+x_{4} \\
f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =-1-x_{1}-x_{2}+x_{3}+5 x_{4} \\
R_{\exists \forall \exists}(f)=\left\{z \in \mathbb{R}^{2} \mid \exists x_{1} \in[-1,1], \forall x_{2} \in[-1,1],\right. & \exists x_{3} \in[-1,1], \\
& \left.\exists x_{4} \in[-1,1], \quad z=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
\end{aligned}
$$

For the joint inner-approximation, interpret (2nd component):

$$
\begin{aligned}
& \exists x_{1}, \forall x_{2}, \forall x_{4}, \exists x_{3}, z_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \forall x_{1}, \forall x_{2}, \forall x_{3}, \exists x_{4}, z_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& z_{2}=\left[z_{2}^{c}+\delta_{x_{1}}+\delta_{x_{2}}+\delta_{x_{4}}-\delta_{x_{3}}, z_{1}^{c}-\delta_{x_{1}}-\delta_{x_{2}}-\delta_{x_{4}}+\delta_{x_{3}}\right] \\
& =\left[\begin{array}{lllll}
-1 & +1+1+1 & -5,-1 & -1-1-1 & +5
\end{array}\right]=[-3,1]
\end{aligned}
$$

Hence $[-1,5] \times[-3,1] \subseteq R_{\exists \exists \exists}(f) \subseteq[-3,7] \times[-7,5]$.

Example, in picture

$$
R_{\exists \exists \exists}(f)=\left\{z \in \mathbb{R}^{2} \mid \exists x_{1}, \forall x_{2}, \exists x_{3}, \exists x_{4}, \quad z=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}
$$

- Samples z^{0}, \ldots, z^{15} of $f\left([-1,1]^{4}\right)$
- Outer-approximation (our method)
- Exact set $R_{\exists \exists \exists}(f)$
- Inner-approximation (our method)

Applications to control systems

Application to control systems

Continuous time dynamical systems

- Contrarily to QE, method applicable directly on solutions of an ODE
- The inner and outer contributions, per variable I_{i} and O_{i} can be derived directly by guaranteed integration (e.g. Taylor models) on the corresponding variational ODE

Example

Dubbins vehicle

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{c}
v \cos (\theta)+b_{1} \\
v \sin (\theta) \\
a
\end{array}\right)
$$

- Control period of $t=0.5$, linear velocity $v=1$,
- Initial conditions:

$$
\mathbb{X}_{0}=\{(x, y, \theta) \mid x \in[-0.1,0.1], y \in[-0.1,0.1], \theta \in[-0.01,0.01]\}
$$

- Control a (angular velocity) in $\mathbb{U}=[-0.01,0.01]$,
- disturbance b_{1} in $\mathbb{W}=[-0.01,0.01]$

We want to estimate (robust reachability):

$$
R_{\exists \exists \exists}(\varphi)=\left\{z \in \mathbb{R}^{m} \mid \exists u \in \mathbb{U}, \exists x_{0} \in \mathbb{X}_{0}, \forall w \in \mathbb{W}, \exists s \in[0, T], z=\varphi\left(s ; x_{0}, u, w\right)\right\}
$$

Dubbins example

Direct computation from the ODE (no need for Taylor approximant here)

- Outer-approximation of a "central trajectory" $\left(x_{c}, y_{c}, \theta_{c}\right)$ starting at $x=0, y=0$, $\theta=0, b_{1}=0$ and $a=0: x_{c}=t, y_{c}=0$ and $\theta_{c}=0$,
- $\frac{\partial x}{\partial t}=\cos (\theta)+b_{1} \in[0.989999965,1.01]$ hence $I_{x, t}=[0,0.494999982]$, $O_{x, t}=[0,0.505]$,
- Similarly for the other variables: $I_{y, t}=0$,
$O_{y, t}=[-\sin (0.015) / 2, \sin (0.015) / 2]=\left[-1.30910^{-4}, 1.30910^{-4}\right]$ and $I_{\theta, t}=0$, $O_{\theta, t}=[-0.005,0.005]$,
- The Jacobian of φ with respect to $x_{0}, y_{0}, \theta_{0}, b_{1}$ and a, satisfies a variational equation: E.g.:

$$
\left(\frac{\dot{\partial x}}{\partial x_{0}}\right)=-v \sin (\theta) \frac{\partial \theta}{\partial x_{0}}+\frac{\partial b_{1}}{\partial x_{0}}
$$

with $\frac{\partial x}{\partial x_{0}}(t=0)=1, \frac{\partial \theta}{\partial x_{0}}(t=0)=0$ etc.

Dubbins example

Direct computation from the ODE (no need for Taylor approximant here)

- Outer-approximation of a "central trajectory" $\left(x_{c}, y_{c}, \theta_{c}\right)$ starting at $x=0, y=0$, $\theta=0, b_{1}=0$ and $a=0: x_{c}=t, y_{c}=0$ and $\theta_{c}=0$,
- $\frac{\partial x}{\partial t}=\cos (\theta)+b_{1} \in[0.989999965,1.01]$ hence $I_{x, t}=[0,0.494999982]$, $O_{x, t}=[0,0.505]$,
- Similarly for the other variables: $I_{y, t}=0$,
$O_{y, t}=[-\sin (0.015) / 2, \sin (0.015) / 2]=\left[-1.30910^{-4}, 1.30910^{-4}\right]$ and $I_{\theta, t}=0$, $O_{\theta, t}=[-0.005,0.005]$,
- The Jacobian of φ with respect to $x_{0}, y_{0}, \theta_{0}, b_{1}$ and a, satisfies a variational equation:
- $I_{x, a}=0, O_{x, a}=\left[-6.54510^{-7}, 6.54510^{-7}\right], I_{x, x_{0}}=O_{x, x_{0}}=[-0.1,0.1], I_{x, \theta_{0}}=0$, $O_{x, \theta_{0}}=\left[-1.30910^{-6}, 1.30910^{-6}\right], I_{x, b_{1}}=0, O_{x, b_{1}}=[-0.005,0.005]$,
- $I_{y, a}=0, O_{y, a}=[-0,0025,0.0025], I_{y, y_{0}}=O_{y, y_{0}}=[-0.1,0.1], I_{y, \theta_{0}}=0$, $O_{y, \theta_{0}}=[-0,005,0.005]$,
- $I_{\theta, \theta_{0}}=O_{\theta, \theta_{0}}=[-0.01,0.01], I_{\theta, a}=0, O_{\theta, a}=[0,0.005]$,

Dubbins example

Compute $R_{\exists \forall \exists}$:

$$
\begin{aligned}
& \exists a \in[-0.01,0.01], \exists x_{0} \in[-0.1,0.1], \exists y_{0} \in[-0.1,0.1], \\
& \exists \theta_{0} \in[-0.01,0.01], \forall b_{1} \in[-0.01,0.01], \exists t \in[0,0.5] \\
& z=\varphi\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)
\end{aligned}
$$

Hence, inner-approximation
Lower bound inner-approximation for x :

$$
\begin{gathered}
x_{c}+\underline{I}_{x, a}+\underline{I}_{x, x_{0}}+\underline{I}_{x, y_{0}}+\underline{I}_{x, \theta_{0}}+\bar{O}_{x, b_{1}}+\underline{I}_{x, t} \\
=0
\end{gathered}-0-1-0.1+0 \quad-0 \quad+0.005+0+0
$$

which is equal to -0.095, and its upper bound:

$$
\begin{gathered}
x_{c}+\bar{I}_{x, a}+\bar{I}_{x, x_{0}}+\bar{I}_{x, y_{0}}+\bar{I}_{x, \theta_{0}}+\underline{O}_{x, b_{1}} \quad+\bar{I}_{x, t} \\
0+0+0.1+0+0
\end{gathered}+-0.005+0.494999982
$$

which is equal to 0.589999982 . Therefore the inner-approximation for x is equal to [-0.095, 0.589999982].

Dubbins example

Compute $R_{\exists \forall \exists}$:

$$
\begin{aligned}
& \exists a \in[-0.01,0.01], \exists x_{0} \in[-0.1,0.1], \exists y_{0} \in[-0.1,0.1], \\
& \exists \theta_{0} \in[-0.01,0.01], \forall b_{1} \in[-0.01,0.01], \exists t \in[0,0.5] \\
& z=\varphi\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)
\end{aligned}
$$

Hence, outer-approximation
Lower bound outer-approximation for the x :

$$
\begin{array}{ccccc}
x_{c} & +\underline{O}_{x, a} & +\underline{O}_{x, x_{0}}+\underline{O}_{x, y_{0}} & +\underline{O}_{x, \theta_{0}} & +\bar{l}_{x, b_{1}}+\underline{O}_{x, t} \\
=0-6.54510^{-7} & -0.1 & +0 & -1.30910^{-6} & +0 \\
=0
\end{array}
$$

which is equal to -0.1000019635 , and its upper bound:

$$
\begin{array}{ccccc}
x_{c} & +\bar{O}_{x, a} & +\bar{O}_{x, x_{0}}+\bar{O}_{x, y_{0}} & +\bar{O}_{x, \theta_{0}} & +\underline{I}_{x, b_{1}}+\bar{O}_{x, t} \\
=0+6.54510^{-7} & +0.1 & 0 & +1.309 & 10^{-6} \\
-0 & +0.505
\end{array}
$$

which is equal to 0.6050019635 . Therefore the outer-approximation for x is equal to [-0.1000019635, 0.6050019635].

Dubbins example

Compute $R_{\exists \exists \exists}$:

$$
\begin{aligned}
& \exists a \in[-0.01,0.01], \exists x_{0} \in[-0.1,0.1], \exists y_{0} \in[-0.1,0.1], \\
& \exists \theta_{0} \in[-0.01,0.01], \forall b_{1} \in[-0.01,0.01], \exists t \in[0,0.5] \\
& z=\varphi\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)
\end{aligned}
$$

And...

- for y the inner-approximation $[-0.1,0.1]$ and over-approximation [-0.1076309, 0.1076309],
- and for θ the inner-approximation $[-0.01,0.01]$ and over-approximation [$-0.02,0.02$].
Very close to results obtained by quantifier elimination (Mathematica), here with a much smaller complexity.

Last application: Dubbins!

Space relaxation

$$
\begin{aligned}
& R_{\exists \exists \exists}(\varphi)=\left\{(x, y, \theta) \mid \exists a \in[-0.01,0.01], \exists x_{0} \in[-0.1,0.1]\right. \\
& \exists y_{0} \in[-0.1,0.1], \exists \theta_{0} \in[-0.01,0.01], \forall b_{1} \in[-0.01,0.01] \\
& \exists t \in[0,0.5], \exists \delta_{2} \in\left[-1.30910^{-4}, 1.30910^{-4}\right], \exists \delta_{3} \in[-0.005,0.005], \\
&\left.(x, y, \theta)=\varphi\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)+\left(0, \delta_{2}, \delta_{3}\right)\right\}
\end{aligned}
$$

Outer-approximation

$$
\begin{aligned}
& R_{\exists \exists \exists}(\varphi) \subseteq[-0.1000019635,0.6050019635] \times \\
& \qquad[0.1077618,0.1077618] \times[-0.025,0.025]
\end{aligned}
$$

Last application: Dubbins!

$$
\begin{aligned}
& R_{\exists \forall \exists}(\varphi)=\left\{(x, y, \theta) \mid \exists a \in[-0.01,0.01], \exists x_{0} \in[-0.1,0.1]\right. \\
& \exists y_{0} \in[-0.1,0.1], \exists \theta_{0} \in[-0.01,0.01], \forall b_{1} \in[-0.01,0.01] \\
& \exists t \in[0,0.5], \exists \delta_{2} \in\left[-1.30910^{-4}, 1.30910^{-4}\right], \exists \delta_{3} \in[-0.005,0.005], \\
&\left.(x, y, \theta)=\varphi\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)+\left(0, \delta_{2}, \delta_{3}\right)\right\}
\end{aligned}
$$

For the inner-approximation, interpret:

$$
\begin{aligned}
& \forall a, \forall y_{0}, \forall \theta_{0}, \exists x_{0}, \forall b_{1}, \forall \delta_{2}, \forall \delta_{3}, \exists t, x=\varphi_{x}\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right) \\
& \quad \forall a, \forall x_{0}, \forall \theta_{0}, \exists y_{0}, \forall b_{1}, \forall \delta_{3}, \forall t, \exists \delta_{2}, y=\varphi_{y}\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)+\delta_{2} \\
& \forall x_{0}, \forall y_{0}, \exists \theta_{0}, \exists a, \forall b_{1}, \forall \delta_{2}, \forall t, \exists \delta_{3}, \theta=\varphi_{\theta}\left(t ; x_{0}, y_{0}, \theta_{0}, a, b_{1}\right)+\delta_{3}
\end{aligned}
$$

$$
[-0.0949993455,0.5899993275] \times[-0.0925,0.0925] \times[-0.01,0.01] \subseteq R_{\exists \exists \exists}(\varphi)
$$

(timeout using quantifier elimination under Mathematica)

To conclude

Implementation
In Julia, using the packages LazySets for manipulating boxes (Hyperrectangles) and Symbolics for automatic differentiation.

Performances

- Benchmarks on a Macbook Pro 2.3 GHz Intel core i 9 with 8 cores, measuring timings using the Benchmark Julia package.
- On a variety of problems up to 2000 variables in the linear case, 104 variables in the non-linear case, shows excellent performance (and QE cannot solve some of the problems with more than 10 variables even in a very long time)
More in the paper E. Goubault, S. Putot: Inner and outer approximate quantifier elimination for general reachability problems. HSCC 2024

Thanks!

More developments soon
with approximations of full QE/quantified constrained solving, and higher-order set-based methods

Any questions?
\{eric.goubault,sylvie.putot\}@polytechnique.edu

